Nuprl Lemma : l-all-and-property

[T:Type]. ∀L:T List. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ']. ∀[B:ℙ].  (B ∧ ∀x∈L.P[x] ⇐⇒ B ∧ (∀x∈L.P[x]))


Proof




Definitions occuring in Statement :  l-all-and: B ∧ ∀x∈L.P[x] l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q l-all-and: B ∧ ∀x∈L.P[x] top: Top iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a not: ¬A false: False cand: c∧ B
Lemmas referenced :  list_induction iff_wf l-all-and_wf l_member_wf and_wf l_all_wf2 list_wf reduce_nil_lemma l_all_nil nil_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse reduce_cons_lemma l_all_cons cons_wf list-subtype
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality setElimination rename setEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation productElimination independent_isectElimination equalityTransitivity equalitySymmetry addLevel impliesFunctionality because_Cache andLevelFunctionality productEquality universeEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}'].  \mforall{}[B:\mBbbP{}].    (B  \mwedge{}  \mforall{}x\mmember{}L.P[x]  \mLeftarrow{}{}\mRightarrow{}  B  \mwedge{}  (\mforall{}x\mmember{}L.P[x]))



Date html generated: 2016_05_15-PM-03_46_59
Last ObjectModification: 2015_12_27-PM-01_21_11

Theory : general


Home Index