Nuprl Lemma : length-lastn

[A:Type]. ∀[L:A List]. ∀[n:ℕ].  ||lastn(n;L)|| n ∈ ℤ supposing n ≤ ||L||


Proof




Definitions occuring in Statement :  lastn: lastn(n;L) length: ||as|| list: List nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  lastn: lastn(n;L) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: nat: squash: T int_iseg: {i...j} and: P ∧ Q cand: c∧ B ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  le_wf length_wf nat_wf list_wf equal_wf squash_wf true_wf length_nth_tl subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf iff_weakening_equal decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality cumulativity isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality applyEquality lambdaEquality imageElimination intEquality dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination productElimination independent_isectElimination dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll productEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[n:\mBbbN{}].    ||lastn(n;L)||  =  n  supposing  n  \mleq{}  ||L||



Date html generated: 2018_05_21-PM-06_31_44
Last ObjectModification: 2017_07_26-PM-04_51_15

Theory : general


Home Index