Nuprl Lemma : map_functionality

[T,A:Type]. ∀[L1,L2:T List]. ∀[f,g:{x:T| (x ∈ L1)}  ⟶ A].
  (map(f;L1) map(g;L2) ∈ (A List)) supposing ((f g ∈ ({x:T| (x ∈ L1)}  ⟶ A)) and (L1 L2 ∈ (T List)))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) map: map(f;as) list: List uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: all: x:A. B[x] implies:  Q subtype_rel: A ⊆B squash: T so_lambda: λ2x.t[x] so_apply: x[s] true: True
Lemmas referenced :  list-subtype list_wf l_member_wf equal_wf subtype_rel_self subtype_rel_wf map_wf squash_wf true_wf set_wf strong-subtype-equal-lists strong-subtype-set3 strong-subtype-self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality equalityTransitivity hypothesis equalitySymmetry setEquality cumulativity lambdaFormation dependent_functionElimination independent_functionElimination functionEquality functionExtensionality applyEquality sqequalRule isect_memberEquality axiomEquality hyp_replacement applyLambdaEquality lambdaEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[T,A:Type].  \mforall{}[L1,L2:T  List].  \mforall{}[f,g:\{x:T|  (x  \mmember{}  L1)\}    {}\mrightarrow{}  A].
    (map(f;L1)  =  map(g;L2))  supposing  ((f  =  g)  and  (L1  =  L2))



Date html generated: 2018_05_21-PM-08_36_40
Last ObjectModification: 2017_07_26-PM-06_01_10

Theory : general


Home Index