Nuprl Lemma : map_functionality
∀[T,A:Type]. ∀[L1,L2:T List]. ∀[f,g:{x:T| (x ∈ L1)}  ⟶ A].
  (map(f;L1) = map(g;L2) ∈ (A List)) supposing ((f = g ∈ ({x:T| (x ∈ L1)}  ⟶ A)) and (L1 = L2 ∈ (T List)))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
Lemmas referenced : 
list-subtype, 
list_wf, 
l_member_wf, 
equal_wf, 
subtype_rel_self, 
subtype_rel_wf, 
map_wf, 
squash_wf, 
true_wf, 
set_wf, 
strong-subtype-equal-lists, 
strong-subtype-set3, 
strong-subtype-self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
setEquality, 
cumulativity, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
hyp_replacement, 
applyLambdaEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[T,A:Type].  \mforall{}[L1,L2:T  List].  \mforall{}[f,g:\{x:T|  (x  \mmember{}  L1)\}    {}\mrightarrow{}  A].
    (map(f;L1)  =  map(g;L2))  supposing  ((f  =  g)  and  (L1  =  L2))
Date html generated:
2018_05_21-PM-08_36_40
Last ObjectModification:
2017_07_26-PM-06_01_10
Theory : general
Home
Index