Nuprl Lemma : member_list_accum_l_subset

[T:Type]
  ∀f:(T List) ⟶ T ⟶ (T List). ∀L,a:T List. ∀x:T.
    ((∀a:T List. ∀x:T.  l_subset(T;a;f[a;x]))
     ((x ∈ a) ∨ (∃z:T. ((z ∈ L) ∧ (∀l:T List. (x ∈ f[l;z])))))
     (x ∈ accumulate (with value and list item x):
             f[a;x]
            over list:
              L
            with starting value:
             a)))


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) l_member: (x ∈ l) list_accum: list_accum list: List uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: implies:  Q so_apply: x[s1;s2] or: P ∨ Q exists: x:A. B[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s] uimplies: supposing a not: ¬A false: False guard: {T} l_subset: l_subset(T;as;bs) iff: ⇐⇒ Q cand: c∧ B
Lemmas referenced :  list_induction list_wf l_subset_wf l_member_wf list_accum_wf list_accum_nil_lemma null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse list_accum_cons_lemma cons_wf istype-universe cons_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality_alt functionEquality hypothesis applyEquality unionEquality productEquality inhabitedIsType universeIsType independent_functionElimination dependent_functionElimination Error :memTop,  unionElimination productElimination because_Cache independent_isectElimination equalityTransitivity equalitySymmetry voidElimination unionIsType productIsType functionIsType rename inlFormation_alt instantiate universeEquality hyp_replacement applyLambdaEquality inrFormation_alt dependent_pairFormation_alt independent_pairFormation

Latex:
\mforall{}[T:Type]
    \mforall{}f:(T  List)  {}\mrightarrow{}  T  {}\mrightarrow{}  (T  List).  \mforall{}L,a:T  List.  \mforall{}x:T.
        ((\mforall{}a:T  List.  \mforall{}x:T.    l\_subset(T;a;f[a;x]))
        {}\mRightarrow{}  ((x  \mmember{}  a)  \mvee{}  (\mexists{}z:T.  ((z  \mmember{}  L)  \mwedge{}  (\mforall{}l:T  List.  (x  \mmember{}  f[l;z])))))
        {}\mRightarrow{}  (x  \mmember{}  accumulate  (with  value  a  and  list  item  x):
                          f[a;x]
                        over  list:
                            L
                        with  starting  value:
                          a)))



Date html generated: 2020_05_20-AM-08_06_38
Last ObjectModification: 2020_01_17-AM-11_19_52

Theory : general


Home Index