Nuprl Lemma : non_neg_sum-map
∀[T:Type]. ∀[f:T ⟶ ℤ]. ∀[L:T List].  0 ≤ Σf[x] for x ∈ L supposing (∀x∈L.0 ≤ f[x])
Proof
Definitions occuring in Statement : 
sum-map: Σf[x] for x ∈ L
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sum-map: Σf[x] for x ∈ L
, 
so_lambda: λ2x.t[x]
, 
l_all: (∀x∈L.P[x])
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
non_neg_sum, 
length_wf_nat, 
int_seg_wf, 
length_wf, 
less_than'_wf, 
sum-map_wf, 
l_all_wf2, 
le_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
independent_pairEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
setEquality, 
isect_memberEquality, 
functionEquality, 
intEquality, 
voidElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List].    0  \mleq{}  \mSigma{}f[x]  for  x  \mmember{}  L  supposing  (\mforall{}x\mmember{}L.0  \mleq{}  f[x])
Date html generated:
2016_05_15-PM-06_26_06
Last ObjectModification:
2015_12_27-PM-00_02_05
Theory : general
Home
Index