Nuprl Lemma : non_neg_sum-map

[T:Type]. ∀[f:T ⟶ ℤ]. ∀[L:T List].  0 ≤ Σf[x] for x ∈ supposing (∀x∈L.0 ≤ f[x])


Proof




Definitions occuring in Statement :  sum-map: Σf[x] for x ∈ L l_all: (∀x∈L.P[x]) list: List uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sum-map: Σf[x] for x ∈ L so_lambda: λ2x.t[x] l_all: (∀x∈L.P[x]) le: A ≤ B all: x:A. B[x] and: P ∧ Q so_apply: x[s] not: ¬A implies:  Q false: False prop: guard: {T}
Lemmas referenced :  non_neg_sum length_wf_nat int_seg_wf length_wf less_than'_wf sum-map_wf l_all_wf2 le_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination productElimination natural_numberEquality because_Cache independent_isectElimination lambdaFormation independent_pairEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry setElimination rename setEquality isect_memberEquality functionEquality intEquality voidElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List].    0  \mleq{}  \mSigma{}f[x]  for  x  \mmember{}  L  supposing  (\mforall{}x\mmember{}L.0  \mleq{}  f[x])



Date html generated: 2016_05_15-PM-06_26_06
Last ObjectModification: 2015_12_27-PM-00_02_05

Theory : general


Home Index