Nuprl Lemma : p-compose-inject

[A,B,C:Type]. ∀[g:A ⟶ (B Top)]. ∀[f:B ⟶ (C Top)].
  (p-inject(A;C;f g)) supposing (p-inject(B;C;f) and p-inject(A;B;g))


Proof




Definitions occuring in Statement :  p-inject: p-inject(A;B;f) p-compose: g uimplies: supposing a uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a p-inject: p-inject(A;B;f) all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B top: Top guard: {T} and: P ∧ Q
Lemmas referenced :  equal_wf do-apply_wf p-compose_wf assert_wf can-apply_wf top_wf subtype_rel_union p-inject_wf can-apply-compose do-apply-compose
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation hypothesis extract_by_obid isectElimination thin cumulativity hypothesisEquality functionExtensionality applyEquality independent_isectElimination because_Cache lambdaEquality isect_memberEquality voidElimination voidEquality sqequalRule dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality unionEquality universeEquality productElimination independent_functionElimination

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:B  {}\mrightarrow{}  (C  +  Top)].
    (p-inject(A;C;f  o  g))  supposing  (p-inject(B;C;f)  and  p-inject(A;B;g))



Date html generated: 2018_05_21-PM-06_32_59
Last ObjectModification: 2017_07_26-PM-04_51_58

Theory : general


Home Index