Nuprl Lemma : can-apply-compose
∀[A,B,C:Type]. ∀[g:A ⟶ (B + Top)]. ∀[f:B ⟶ (C + Top)]. ∀[x:A].
  {(↑can-apply(g;x)) ∧ (↑can-apply(f;do-apply(g;x)))} supposing ↑can-apply(f o g;x)
Proof
Definitions occuring in Statement : 
p-compose: f o g
, 
do-apply: do-apply(f;x)
, 
can-apply: can-apply(f;x)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
guard: {T}
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
cand: A c∧ B
, 
true: True
, 
prop: ℙ
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
false: False
, 
top: Top
Lemmas referenced : 
can-apply-compose-sq, 
can-apply_wf, 
bool_wf, 
eqtt_to_assert, 
assert_wf, 
do-apply_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
false_wf, 
assert_witness, 
subtype_rel_union, 
top_wf, 
p-compose_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
functionExtensionality, 
applyEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
independent_pairEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
functionEquality, 
unionEquality, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:B  {}\mrightarrow{}  (C  +  Top)].  \mforall{}[x:A].
    \{(\muparrow{}can-apply(g;x))  \mwedge{}  (\muparrow{}can-apply(f;do-apply(g;x)))\}  supposing  \muparrow{}can-apply(f  o  g;x)
Date html generated:
2017_10_01-AM-09_13_34
Last ObjectModification:
2017_07_26-PM-04_48_56
Theory : general
Home
Index