Nuprl Lemma : ppcc-test6

[A,B:Type]. ∀[f:A ⟶ B]. ∀[as,L:A List]. ∀[n:ℤ].
  ||L as|| (n n) ∈ ℤ ⇐⇒ ||map(f;as)|| n ∈ ℤ supposing ||L|| ||as|| ∈ ℤ


Proof




Definitions occuring in Statement :  length: ||as|| map: map(f;as) append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] add: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q top: Top prop: subtype_rel: A ⊆B rev_implies:  Q sq_type: SQType(T) all: x:A. B[x] guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A
Lemmas referenced :  map-length equal-wf-T-base length_wf append_wf int_subtype_base subtype_base_sq length_append subtype_rel_list top_wf map_wf equal_wf list_wf non_neg_length length-append decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis intEquality cumulativity hypothesisEquality baseApply closedConclusion baseClosed applyEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination dependent_functionElimination independent_functionElimination because_Cache addEquality lambdaEquality functionExtensionality productElimination independent_pairEquality axiomEquality functionEquality universeEquality unionElimination natural_numberEquality dependent_pairFormation int_eqEquality computeAll

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as,L:A  List].  \mforall{}[n:\mBbbZ{}].
    ||L  @  as||  =  (n  +  n)  \mLeftarrow{}{}\mRightarrow{}  ||map(f;as)||  =  n  supposing  ||L||  =  ||as||



Date html generated: 2018_05_21-PM-09_04_18
Last ObjectModification: 2017_07_26-PM-06_27_14

Theory : general


Home Index