Nuprl Lemma : ppcc-test6
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[as,L:A List]. ∀[n:ℤ].
  ||L @ as|| = (n + n) ∈ ℤ 
⇐⇒ ||map(f;as)|| = n ∈ ℤ supposing ||L|| = ||as|| ∈ ℤ
Proof
Definitions occuring in Statement : 
length: ||as||
, 
map: map(f;as)
, 
append: as @ bs
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
Lemmas referenced : 
map-length, 
equal-wf-T-base, 
length_wf, 
append_wf, 
int_subtype_base, 
subtype_base_sq, 
length_append, 
subtype_rel_list, 
top_wf, 
map_wf, 
equal_wf, 
list_wf, 
non_neg_length, 
length-append, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
intEquality, 
cumulativity, 
hypothesisEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
addEquality, 
lambdaEquality, 
functionExtensionality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
universeEquality, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as,L:A  List].  \mforall{}[n:\mBbbZ{}].
    ||L  @  as||  =  (n  +  n)  \mLeftarrow{}{}\mRightarrow{}  ||map(f;as)||  =  n  supposing  ||L||  =  ||as||
Date html generated:
2018_05_21-PM-09_04_18
Last ObjectModification:
2017_07_26-PM-06_27_14
Theory : general
Home
Index