Nuprl Lemma : record-select_wf2

[T:𝕌']. ∀[z:Atom]. ∀[B:T ⟶ 𝕌']. ∀[r:Tz:B[self]].  (r.z ∈ B[r])


Proof




Definitions occuring in Statement :  record-select: r.x record+: record+ uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] record+: record+ member: t ∈ T record-select: r.x subtype_rel: A ⊆B guard: {T} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  so_apply: x[s] bfalse: ff uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  not: ¬A so_lambda: λ2x.t[x]
Lemmas referenced :  subtype_rel-equal eq_atom_wf top_wf eqtt_to_assert assert_of_eq_atom eqff_to_assert atom_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_atom record+_wf istype-atom istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution dependentIntersectionElimination cut applyEquality hypothesis hypothesisEquality thin instantiate introduction extract_by_obid isectElimination because_Cache inhabitedIsType lambdaFormation_alt unionElimination equalityElimination sqequalRule cumulativity equalityIsType1 equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_isectElimination productElimination dependent_pairFormation_alt equalityIsType4 baseApply closedConclusion baseClosed promote_hyp voidElimination universeIsType lambdaEquality_alt functionIsType universeEquality

Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[z:Atom].  \mforall{}[B:T  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[r:Tz:B[self]].    (r.z  \mmember{}  B[r])



Date html generated: 2019_10_15-AM-11_28_40
Last ObjectModification: 2018_10_16-PM-02_35_40

Theory : general


Home Index