Nuprl Lemma : strong-fun-connected-induction

[T:Type]
  ∀f:T ⟶ T
    ∀[R:T ⟶ T ⟶ ℙ]
      (retraction(T;f)
       (∀x:T. R[x;x])
       (∀x,y,z:T.
            (y is f*(z)  (∀u:T. (y is f*(u)  is f*(z)  R[u;z]))  R[x;z]) supposing 
               ((¬(x y ∈ T)) and 
               (x (f y) ∈ T)))
       {∀x,y:T.  (x is f*(y)  R[x;y])})


Proof




Definitions occuring in Statement :  retraction: retraction(T;f) fun-connected: is f*(x) uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q guard: {T} retraction: retraction(T;f) exists: x:A. B[x] member: t ∈ T uimplies: supposing a not: ¬A false: False prop: so_apply: x[s1;s2] subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] fun-connected: is f*(x) or: P ∨ Q less_than: a < b squash: T and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2y.t[x; y] decidable: Dec(P) le: A ≤ B uiff: uiff(P;Q) true: True less_than': less_than'(a;b)
Lemmas referenced :  istype-universe istype-void fun-connected_wf subtype_rel_self retraction_wf less_than_wf subtract_wf nat_wf istype-int primrec-wf2 all_wf retraction-fun-path full-omega-unsat intformand_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf fun-connected-induction decidable__lt subtract-is-int-iff intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma false_wf decidable__le le_wf squash_wf true_wf itermAdd_wf int_term_value_add_lemma add_nat_wf subtract_nat_wf istype-false
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin sqequalRule functionIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis inhabitedIsType isectIsType equalityIsType1 applyEquality because_Cache universeIsType instantiate universeEquality rename setElimination lambdaEquality_alt natural_numberEquality setIsType functionEquality dependent_functionElimination independent_functionElimination independent_isectElimination unionElimination imageElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation hyp_replacement equalitySymmetry dependent_set_memberEquality_alt productIsType applyLambdaEquality axiomEquality functionIsTypeImplies equalityTransitivity pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed imageMemberEquality addEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            (retraction(T;f)
            {}\mRightarrow{}  (\mforall{}x:T.  R[x;x])
            {}\mRightarrow{}  (\mforall{}x,y,z:T.
                        (y  is  f*(z)  {}\mRightarrow{}  (\mforall{}u:T.  (y  is  f*(u)  {}\mRightarrow{}  u  is  f*(z)  {}\mRightarrow{}  R[u;z]))  {}\mRightarrow{}  R[x;z])  supposing 
                              ((\mneg{}(x  =  y))  and 
                              (x  =  (f  y))))
            {}\mRightarrow{}  \{\mforall{}x,y:T.    (x  is  f*(y)  {}\mRightarrow{}  R[x;y])\})



Date html generated: 2019_10_15-AM-11_14_23
Last ObjectModification: 2018_10_09-PM-02_14_14

Theory : general


Home Index