Nuprl Lemma : strong-fun-connected-induction
∀[T:Type]
  ∀f:T ⟶ T
    ∀[R:T ⟶ T ⟶ ℙ]
      (retraction(T;f)
      
⇒ (∀x:T. R[x;x])
      
⇒ (∀x,y,z:T.
            (y is f*(z) 
⇒ (∀u:T. (y is f*(u) 
⇒ u is f*(z) 
⇒ R[u;z])) 
⇒ R[x;z]) supposing 
               ((¬(x = y ∈ T)) and 
               (x = (f y) ∈ T)))
      
⇒ {∀x,y:T.  (x is f*(y) 
⇒ R[x;y])})
Proof
Definitions occuring in Statement : 
retraction: retraction(T;f)
, 
fun-connected: y is f*(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
retraction: retraction(T;f)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
fun-connected: y is f*(x)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
true: True
, 
less_than': less_than'(a;b)
Lemmas referenced : 
istype-universe, 
istype-void, 
fun-connected_wf, 
subtype_rel_self, 
retraction_wf, 
less_than_wf, 
subtract_wf, 
nat_wf, 
istype-int, 
primrec-wf2, 
all_wf, 
retraction-fun-path, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
fun-connected-induction, 
decidable__lt, 
subtract-is-int-iff, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
false_wf, 
decidable__le, 
le_wf, 
squash_wf, 
true_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
add_nat_wf, 
subtract_nat_wf, 
istype-false
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
functionIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
isectIsType, 
equalityIsType1, 
applyEquality, 
because_Cache, 
universeIsType, 
instantiate, 
universeEquality, 
rename, 
setElimination, 
lambdaEquality_alt, 
natural_numberEquality, 
setIsType, 
functionEquality, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
unionElimination, 
imageElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
productIsType, 
applyLambdaEquality, 
axiomEquality, 
functionIsTypeImplies, 
equalityTransitivity, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
imageMemberEquality, 
addEquality
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            (retraction(T;f)
            {}\mRightarrow{}  (\mforall{}x:T.  R[x;x])
            {}\mRightarrow{}  (\mforall{}x,y,z:T.
                        (y  is  f*(z)  {}\mRightarrow{}  (\mforall{}u:T.  (y  is  f*(u)  {}\mRightarrow{}  u  is  f*(z)  {}\mRightarrow{}  R[u;z]))  {}\mRightarrow{}  R[x;z])  supposing 
                              ((\mneg{}(x  =  y))  and 
                              (x  =  (f  y))))
            {}\mRightarrow{}  \{\mforall{}x,y:T.    (x  is  f*(y)  {}\mRightarrow{}  R[x;y])\})
Date html generated:
2019_10_15-AM-11_14_23
Last ObjectModification:
2018_10_09-PM-02_14_14
Theory : general
Home
Index