Nuprl Lemma : flattice-order_transitivity

[X:Type]. ∀as,bs,cs:(X X) List List.  (flattice-order(X;as;bs)  flattice-order(X;bs;cs)  flattice-order(X;as;cs))


Proof




Definitions occuring in Statement :  flattice-order: flattice-order(X;as;bs) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q flattice-order: flattice-order(X;as;bs) member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] or: P ∨ Q rev_implies:  Q cand: c∧ B guard: {T}
Lemmas referenced :  l_all_iff list_wf l_member_wf or_wf l_exists_wf equal_wf flip-union_wf l_contains_wf l_exists_iff exists_wf all_wf flattice-order_wf l_contains-member l_contains_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin unionEquality cumulativity hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality setElimination rename because_Cache setEquality productElimination independent_functionElimination allFunctionality addLevel orFunctionality productEquality promote_hyp unionElimination inlFormation dependent_pairFormation independent_pairFormation inrFormation impliesFunctionality functionEquality universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}as,bs,cs:(X  +  X)  List  List.
        (flattice-order(X;as;bs)  {}\mRightarrow{}  flattice-order(X;bs;cs)  {}\mRightarrow{}  flattice-order(X;as;cs))



Date html generated: 2020_05_20-AM-08_59_22
Last ObjectModification: 2017_07_28-AM-09_18_11

Theory : lattices


Home Index