Nuprl Lemma : agree_on_wf

[T:Type]. ∀[P:T ⟶ ℙ].  (agree_on(T;a.P[a]) ∈ (T List) ⟶ (T List) ⟶ ℙ)


Proof




Definitions occuring in Statement :  agree_on: agree_on(T;x.P[x]) list: List uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T agree_on: agree_on(T;x.P[x]) prop: cand: c∧ B so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  equal_wf length_wf all_wf int_seg_wf or_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality productEquality extract_by_obid sqequalHypSubstitution isectElimination thin intEquality cumulativity hypothesisEquality hypothesis because_Cache natural_numberEquality functionEquality applyEquality functionExtensionality setElimination rename independent_isectElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    (agree\_on(T;a.P[a])  \mmember{}  (T  List)  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2017_10_01-AM-08_38_48
Last ObjectModification: 2017_07_26-PM-04_27_14

Theory : list!


Home Index