Nuprl Lemma : row-list-matrix_wf
∀[n,m:ℕ]. ∀[r:RngSig]. ∀[L:|r| List List].
  (row-list-matrix(L) ∈ Matrix(n;m;r)) supposing ((∀i:ℕn. (m ≤ ||L[i]||)) and (n ≤ ||L||))
Proof
Definitions occuring in Statement : 
row-list-matrix: row-list-matrix(L)
, 
matrix: Matrix(n;m;r)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
le: A ≤ B
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
int_seg: {i..j-}
, 
so_lambda: λ2x y.t[x; y]
, 
nat: ℕ
, 
row-list-matrix: row-list-matrix(L)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
rng_sig_wf, 
le_wf, 
all_wf, 
int_seg_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
length_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
list_wf, 
rng_car_wf, 
select_wf, 
mx_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
productElimination, 
natural_numberEquality, 
independent_isectElimination, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
rename, 
setElimination, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[r:RngSig].  \mforall{}[L:|r|  List  List].
    (row-list-matrix(L)  \mmember{}  Matrix(n;m;r))  supposing  ((\mforall{}i:\mBbbN{}n.  (m  \mleq{}  ||L[i]||))  and  (n  \mleq{}  ||L||))
Date html generated:
2018_05_21-PM-09_45_07
Last ObjectModification:
2017_12_14-PM-05_34_49
Theory : matrices
Home
Index