Nuprl Lemma : row-list-matrix_wf

[n,m:ℕ]. ∀[r:RngSig]. ∀[L:|r| List List].
  (row-list-matrix(L) ∈ Matrix(n;m;r)) supposing ((∀i:ℕn. (m ≤ ||L[i]||)) and (n ≤ ||L||))


Proof




Definitions occuring in Statement :  row-list-matrix: row-list-matrix(L) matrix: Matrix(n;m;r) select: L[n] length: ||as|| list: List int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] member: t ∈ T natural_number: $n rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] so_apply: x[s1;s2] le: A ≤ B prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  and: P ∧ Q lelt: i ≤ j < k guard: {T} int_seg: {i..j-} so_lambda: λ2y.t[x; y] nat: row-list-matrix: row-list-matrix(L) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf rng_sig_wf le_wf all_wf int_seg_wf int_formula_prop_less_lemma intformless_wf length_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties list_wf rng_car_wf select_wf mx_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation unionElimination dependent_functionElimination productElimination natural_numberEquality independent_isectElimination lambdaEquality hypothesisEquality hypothesis rename setElimination because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[r:RngSig].  \mforall{}[L:|r|  List  List].
    (row-list-matrix(L)  \mmember{}  Matrix(n;m;r))  supposing  ((\mforall{}i:\mBbbN{}n.  (m  \mleq{}  ||L[i]||))  and  (n  \mleq{}  ||L||))



Date html generated: 2018_05_21-PM-09_45_07
Last ObjectModification: 2017_12_14-PM-05_34_49

Theory : matrices


Home Index