Nuprl Lemma : scalar-product-0
∀[r:Rng]. ∀[n:ℕ]. ∀[a:ℕn ⟶ |r|].  ((0 . a) = 0 ∈ |r|)
Proof
Definitions occuring in Statement : 
scalar-product: (a . b)
, 
zero-vector: 0
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
scalar-product: (a . b)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
squash: ↓T
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
zero-vector: 0
, 
true: True
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rng_sum_0, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rng_sum_wf, 
squash_wf, 
true_wf, 
int_seg_wf, 
rng_car_wf, 
nat_wf, 
rng_wf, 
equal_wf, 
rng_times_zero, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
universeEquality, 
productElimination, 
instantiate
Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  |r|].    ((0  .  a)  =  0)
Date html generated:
2018_05_21-PM-09_42_00
Last ObjectModification:
2018_05_19-PM-04_33_41
Theory : matrices
Home
Index