Nuprl Lemma : scalar-product-0

[r:Rng]. ∀[n:ℕ]. ∀[a:ℕn ⟶ |r|].  ((0 a) 0 ∈ |r|)


Proof




Definitions occuring in Statement :  scalar-product: (a b) zero-vector: 0 int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T rng: Rng rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T scalar-product: (a b) nat: uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: squash: T rng: Rng so_lambda: λ2x.t[x] zero-vector: 0 true: True so_apply: x[s] subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rng_sum_0 nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rng_sum_wf squash_wf true_wf int_seg_wf rng_car_wf nat_wf rng_wf equal_wf rng_times_zero subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality setElimination rename because_Cache hypothesis independent_isectElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation applyEquality imageElimination equalityTransitivity equalitySymmetry functionEquality imageMemberEquality baseClosed axiomEquality universeEquality productElimination instantiate

Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  |r|].    ((0  .  a)  =  0)



Date html generated: 2018_05_21-PM-09_42_00
Last ObjectModification: 2018_05_19-PM-04_33_41

Theory : matrices


Home Index