Nuprl Lemma : qavg-eq-iff-5

[a,b,c:ℚ].  uiff(qavg(b;a) qavg(a;c) ∈ ℚ;b c ∈ ℚ)


Proof




Definitions occuring in Statement :  qavg: qavg(a;b) rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  qavg: qavg(a;b) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B not: ¬A implies:  Q qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b false: False squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  qdiv_wf qadd_wf int-subtype-rationals assert-qeq equal_wf squash_wf true_wf istype-universe not_wf equal-wf-T-base rationals_wf qadd_com subtype_rel_self iff_weakening_equal qmul_wf qadd_comm_q qmul-qdiv-cancel qadd_ac_1_q qadd_inv_assoc_q
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut independent_pairFormation hypothesis equalityIstype inhabitedIsType hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality applyEquality independent_isectElimination lambdaFormation_alt equalityTransitivity equalitySymmetry productElimination voidElimination baseClosed sqequalBase because_Cache lambdaEquality_alt imageElimination universeIsType instantiate universeEquality imageMemberEquality independent_functionElimination independent_pairEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies minusEquality applyLambdaEquality

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(qavg(b;a)  =  qavg(a;c);b  =  c)



Date html generated: 2020_05_20-AM-09_16_58
Last ObjectModification: 2020_01_04-PM-10_19_27

Theory : rationals


Home Index