Nuprl Lemma : qsum_product

[a,b,c,d:ℤ]. ∀[x:{a..b 1-} ⟶ ℚ]. ∀[y:{c..d 1-} ⟶ ℚ].
  ((Σa ≤ i < b. x[i] * Σc ≤ j < d. y[j]) = Σa ≤ i < b. Σc ≤ j < d. x[i] y[j] ∈ ℚ)


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qmul: s rationals: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe rationals_wf qmul_com qsum_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma istype-le istype-less_than int_seg_wf qmul_wf subtype_rel_self iff_weakening_equal qsum-linearity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType instantiate universeEquality sqequalRule dependent_set_memberEquality_alt setElimination rename productElimination independent_pairFormation dependent_functionElimination unionElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  voidElimination addEquality productIsType because_Cache imageMemberEquality baseClosed functionIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[a,b,c,d:\mBbbZ{}].  \mforall{}[x:\{a..b  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[y:\{c..d  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].
    ((\mSigma{}a  \mleq{}  i  <  b.  x[i]  *  \mSigma{}c  \mleq{}  j  <  d.  y[j])  =  \mSigma{}a  \mleq{}  i  <  b.  \mSigma{}c  \mleq{}  j  <  d.  x[i]  *  y[j])



Date html generated: 2020_05_20-AM-09_26_05
Last ObjectModification: 2019_12_31-PM-04_59_40

Theory : rationals


Home Index