Nuprl Lemma : fl-all-hom_wf1

[I:fset(ℕ)]. ∀[i:ℕ].
  (fl-all-hom(I;i) ∈ {g:Hom(face_lattice(I+i);face_lattice(I))| 
                      (∀j:names(I)
                         ((¬(j i ∈ ℤ))
                          (((g (j=0)) (j=0) ∈ Point(face_lattice(I)))
                            ∧ ((g (j=1)) (j=1) ∈ Point(face_lattice(I))))))
                      ∧ ((g (i=0)) 0 ∈ Point(face_lattice(I)))
                      ∧ ((g (i=1)) 0 ∈ Point(face_lattice(I)))} )


Proof




Definitions occuring in Statement :  fl-all-hom: fl-all-hom(I;i) fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) add-name: I+i names: names(I) bounded-lattice-hom: Hom(l1;l2) lattice-0: 0 lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fl-all-hom: fl-all-hom(I;i) subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q true: True so_apply: x[s] so_lambda: λ2x.t[x] squash: T false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q prop: exists: x:A. B[x] bfalse: ff bdd-distributive-lattice: BoundedDistributiveLattice uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] nat: names: names(I) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) respects-equality: respects-equality(S;T) fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) cand: c∧ B ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  istype-nat fset_wf nat_wf FL-meet-0-1 iff_weakening_equal bdd-distributive-lattice-subtype-lattice lattice-meet-idempotent lattice-join_wf lattice-meet_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set lattice-point_wf true_wf squash_wf fl1_wf not-added-name fl0_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert bdd-distributive-lattice_wf lattice-0_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf face_lattice-deq_wf face_lattice_wf names-deq_wf add-name_wf names_wf fl-lift_wf bounded-lattice-hom_wf face-lattice_wf face-lattice0_wf ifthenelse_wf face_lattice-point-subtype f-subset-add-name respects-equality-face-lattice-point face-lattice1_wf trivial-member-add-name1 fset-member_wf int-deq_wf names-subtype nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf set_subtype_base le_wf int_subtype_base assert_wf bnot_wf not_wf equal-wf-base eq_int_eq_true btrue_wf subtype_rel_self bfalse_wf assert_elim btrue_neq_bfalse istype-assert bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality hypothesis sqequalHypSubstitution sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isect_memberEquality_alt isectElimination thin hypothesisEquality isectIsTypeImplies inhabitedIsType universeIsType baseClosed imageMemberEquality natural_numberEquality productEquality universeEquality imageElimination voidElimination independent_functionElimination cumulativity instantiate dependent_functionElimination promote_hyp dependent_pairFormation independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation rename setElimination lambdaEquality because_Cache lambdaEquality_alt setIsType functionIsType productIsType equalityIstype isectEquality dependent_set_memberEquality_alt lambdaFormation_alt approximateComputation dependent_pairFormation_alt int_eqEquality independent_pairFormation intEquality sqequalBase baseApply closedConclusion applyLambdaEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].
    (fl-all-hom(I;i)  \mmember{}  \{g:Hom(face\_lattice(I+i);face\_lattice(I))| 
                                            (\mforall{}j:names(I).  ((\mneg{}(j  =  i))  {}\mRightarrow{}  (((g  (j=0))  =  (j=0))  \mwedge{}  ((g  (j=1))  =  (j=1)))))
                                            \mwedge{}  ((g  (i=0))  =  0)
                                            \mwedge{}  ((g  (i=1))  =  0)\}  )



Date html generated: 2019_11_04-PM-05_34_23
Last ObjectModification: 2018_12_13-PM-00_38_29

Theory : cubical!type!theory


Home Index