Nuprl Lemma : fl-all-hom_wf1
∀[I:fset(ℕ)]. ∀[i:ℕ].
  (fl-all-hom(I;i) ∈ {g:Hom(face_lattice(I+i);face_lattice(I))| 
                      (∀j:names(I)
                         ((¬(j = i ∈ ℤ))
                         
⇒ (((g (j=0)) = (j=0) ∈ Point(face_lattice(I)))
                            ∧ ((g (j=1)) = (j=1) ∈ Point(face_lattice(I))))))
                      ∧ ((g (i=0)) = 0 ∈ Point(face_lattice(I)))
                      ∧ ((g (i=1)) = 0 ∈ Point(face_lattice(I)))} )
Proof
Definitions occuring in Statement : 
fl-all-hom: fl-all-hom(I;i)
, 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
add-name: I+i
, 
names: names(I)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-0: 0
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fl-all-hom: fl-all-hom(I;i)
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
names: names(I)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
respects-equality: respects-equality(S;T)
, 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
istype-nat, 
fset_wf, 
nat_wf, 
FL-meet-0-1, 
iff_weakening_equal, 
bdd-distributive-lattice-subtype-lattice, 
lattice-meet-idempotent, 
lattice-join_wf, 
lattice-meet_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
lattice-point_wf, 
true_wf, 
squash_wf, 
fl1_wf, 
not-added-name, 
fl0_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
bdd-distributive-lattice_wf, 
lattice-0_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
face_lattice-deq_wf, 
face_lattice_wf, 
names-deq_wf, 
add-name_wf, 
names_wf, 
fl-lift_wf, 
bounded-lattice-hom_wf, 
face-lattice_wf, 
face-lattice0_wf, 
ifthenelse_wf, 
face_lattice-point-subtype, 
f-subset-add-name, 
respects-equality-face-lattice-point, 
face-lattice1_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
names-subtype, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
eq_int_eq_true, 
btrue_wf, 
subtype_rel_self, 
bfalse_wf, 
assert_elim, 
btrue_neq_bfalse, 
istype-assert, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
productEquality, 
universeEquality, 
imageElimination, 
voidElimination, 
independent_functionElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
independent_isectElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
rename, 
setElimination, 
lambdaEquality, 
because_Cache, 
lambdaEquality_alt, 
setIsType, 
functionIsType, 
productIsType, 
equalityIstype, 
isectEquality, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
intEquality, 
sqequalBase, 
baseApply, 
closedConclusion, 
applyLambdaEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].
    (fl-all-hom(I;i)  \mmember{}  \{g:Hom(face\_lattice(I+i);face\_lattice(I))| 
                                            (\mforall{}j:names(I).  ((\mneg{}(j  =  i))  {}\mRightarrow{}  (((g  (j=0))  =  (j=0))  \mwedge{}  ((g  (j=1))  =  (j=1)))))
                                            \mwedge{}  ((g  (i=0))  =  0)
                                            \mwedge{}  ((g  (i=1))  =  0)\}  )
Date html generated:
2019_11_04-PM-05_34_23
Last ObjectModification:
2018_12_13-PM-00_38_29
Theory : cubical!type!theory
Home
Index