Nuprl Lemma : uabeta_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  (uabeta(G;A;B) ∈ {G ⊢ _:uabeta-type(G;A;B)})


Proof




Definitions occuring in Statement :  uabeta: uabeta(G;A;B) uabeta-type: uabeta-type(G;A;B) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uabeta-type: uabeta-type(G;A;B) uimplies: supposing a all: x:A. B[x] true: True squash: T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uabeta: uabeta(G;A;B) let: let composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) universe-comp-fun: CompFun(A) csm-comp-structure: (cA)tau universe-comp-op: compOp(t) comp-op-to-comp-fun: cop-to-cfun(cA) csm-composition: (comp)sigma composition-term: comp cA [phi ⊢→ u] a0 cubical-term-at: u(a) cc-adjoin-cube: (v;u) interval-type: 𝕀 subset-iota: iota csm-comp: F csm-ap-term: (t)s cc-fst: p csm-ap-type: (AF)s csm-ap: (s)x compose: g constant-cubical-type: (X) path-trans: PathTransport(p) cc-snd: q interval-0: 0(𝕀) csm-id-adjoin: [u] csm+: tau+ csm-id: 1(X) csm-adjoin: (s;u) pi2: snd(t) pi1: fst(t) interval-1: 1(𝕀) same-cubical-term: X ⊢ u=v:A universe-decode: decode(t) label: ...$L... t equiv-path: EquivPath(G;A;B;f) term-to-path: <>(a) path-eta: path-eta(pth) cubicalpath-app: pth r cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C)
Lemmas referenced :  universe-decode_wf csm-ap-term-universe cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf cubical-equiv_wf path-type_wf csm-ap-type_wf csm-ap-term_wf cc-snd_wf cubical-equiv-p cubical-term-eqcd equiv-fun_wf cubical-app_wf_fun csm-universe-decode universe-comp-fun_wf cubical-universe-p istype-cubical-universe-term cubical_set_wf cubical-type_wf equal_wf squash_wf true_wf istype-universe cube_set_map_wf subtype_rel_self iff_weakening_equal univ-a_wf cubical-universe_wf path-trans_wf cubical-lambda_wf cubical-pi_wf uabeta_aux_wf transprt-const_wf csm-comp-structure_wf2 istype-cubical-term univ-trans-equiv_path cubical-fun_wf csm-cubical-fun app-trans-equiv-path cubical-term_wf csm-trans-equiv-path composition-structure_wf csm-universe-comp-fun csm-univ-trans equiv_path_wf equiv_path-0 subtype_rel_universe1 equiv_path-1 interval-type_wf csm-equiv_path csm-cubical-equiv app-univ-a path-eta_wf csm-cubical-universe path-type-sub-pathtype csm-cubical-lambda cc-fst_wf_interval cubical-beta csm+_wf_interval csm-interval-type subset-cubical-term sub_cubical_set_self csm-adjoin-fst-snd csm-ap-id-term cubical-app_wf cubical-pi-p univ-trans_wf csm-id-adjoin_wf-interval-0 csm-id-adjoin_wf-interval-1 subset-cubical-term2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt hyp_replacement universeIsType dependent_functionElimination Error :memTop,  natural_numberEquality imageElimination universeEquality inhabitedIsType imageMemberEquality baseClosed productElimination independent_functionElimination lambdaFormation_alt equalityIstype applyLambdaEquality equalityElimination dependent_set_memberEquality_alt independent_pairFormation productIsType setElimination rename cumulativity promote_hyp

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    (uabeta(G;A;B)  \mmember{}  \{G  \mvdash{}  \_:uabeta-type(G;A;B)\})



Date html generated: 2020_05_20-PM-07_44_21
Last ObjectModification: 2020_05_01-PM-05_55_07

Theory : cubical!type!theory


Home Index