Nuprl Lemma : uabeta_wf
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  (uabeta(G;A;B) ∈ {G ⊢ _:uabeta-type(G;A;B)})
Proof
Definitions occuring in Statement : 
uabeta: uabeta(G;A;B), 
uabeta-type: uabeta-type(G;A;B), 
cubical-universe: c𝕌, 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uabeta-type: uabeta-type(G;A;B), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
true: True, 
squash: ↓T, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
uabeta: uabeta(G;A;B), 
let: let, 
composition-structure: Gamma ⊢ Compositon(A), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp), 
universe-comp-fun: CompFun(A), 
csm-comp-structure: (cA)tau, 
universe-comp-op: compOp(t), 
comp-op-to-comp-fun: cop-to-cfun(cA), 
csm-composition: (comp)sigma, 
composition-term: comp cA [phi ⊢→ u] a0, 
cubical-term-at: u(a), 
cc-adjoin-cube: (v;u), 
interval-type: 𝕀, 
subset-iota: iota, 
csm-comp: G o F, 
csm-ap-term: (t)s, 
cc-fst: p, 
csm-ap-type: (AF)s, 
csm-ap: (s)x, 
compose: f o g, 
constant-cubical-type: (X), 
path-trans: PathTransport(p), 
cc-snd: q, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm+: tau+, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
pi2: snd(t), 
pi1: fst(t), 
interval-1: 1(𝕀), 
same-cubical-term: X ⊢ u=v:A, 
universe-decode: decode(t), 
label: ...$L... t, 
equiv-path: EquivPath(G;A;B;f), 
term-to-path: <>(a), 
path-eta: path-eta(pth), 
cubicalpath-app: pth @ r, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
type-cat: TypeCat, 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C)
Lemmas referenced : 
universe-decode_wf, 
csm-ap-term-universe, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cc-fst_wf, 
cubical-equiv_wf, 
path-type_wf, 
csm-ap-type_wf, 
csm-ap-term_wf, 
cc-snd_wf, 
cubical-equiv-p, 
cubical-term-eqcd, 
equiv-fun_wf, 
cubical-app_wf_fun, 
csm-universe-decode, 
universe-comp-fun_wf, 
cubical-universe-p, 
istype-cubical-universe-term, 
cubical_set_wf, 
cubical-type_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cube_set_map_wf, 
subtype_rel_self, 
iff_weakening_equal, 
univ-a_wf, 
cubical-universe_wf, 
path-trans_wf, 
cubical-lambda_wf, 
cubical-pi_wf, 
uabeta_aux_wf, 
transprt-const_wf, 
csm-comp-structure_wf2, 
istype-cubical-term, 
univ-trans-equiv_path, 
cubical-fun_wf, 
csm-cubical-fun, 
app-trans-equiv-path, 
cubical-term_wf, 
csm-trans-equiv-path, 
composition-structure_wf, 
csm-universe-comp-fun, 
csm-univ-trans, 
equiv_path_wf, 
equiv_path-0, 
subtype_rel_universe1, 
equiv_path-1, 
interval-type_wf, 
csm-equiv_path, 
csm-cubical-equiv, 
app-univ-a, 
path-eta_wf, 
csm-cubical-universe, 
path-type-sub-pathtype, 
csm-cubical-lambda, 
cc-fst_wf_interval, 
cubical-beta, 
csm+_wf_interval, 
csm-interval-type, 
subset-cubical-term, 
sub_cubical_set_self, 
csm-adjoin-fst-snd, 
csm-ap-id-term, 
cubical-app_wf, 
cubical-pi-p, 
univ-trans_wf, 
csm-id-adjoin_wf-interval-0, 
csm-id-adjoin_wf-interval-1, 
subset-cubical-term2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
sqequalRule, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
dependent_functionElimination, 
Error :memTop, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
lambdaFormation_alt, 
equalityIstype, 
applyLambdaEquality, 
equalityElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
setElimination, 
rename, 
cumulativity, 
promote_hyp
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    (uabeta(G;A;B)  \mmember{}  \{G  \mvdash{}  \_:uabeta-type(G;A;B)\})
Date html generated:
2020_05_20-PM-07_44_21
Last ObjectModification:
2020_05_01-PM-05_55_07
Theory : cubical!type!theory
Home
Index