Nuprl Lemma : update-context-lvl_wf

[ctxt:CubicalContext]. ∀[lvl:ℕ4]. ∀[T:{fst(ctxt) ⊢lvl _}]. ∀[v:varname()].
  (update-context-lvl(ctxt;lvl;T;v) ∈ CubicalContext)


Proof




Definitions occuring in Statement :  update-context-lvl: update-context-lvl(ctxt;lvl;T;v) cubical_context: CubicalContext ctt-level-type: {X ⊢lvl _} varname: varname() int_seg: {i..j-} uall: [x:A]. B[x] pi1: fst(t) member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_context: CubicalContext update-context-lvl: update-context-lvl(ctxt;lvl;T;v) pi1: fst(t) spreadn: spread3 nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B ctt-level-type: {X ⊢lvl _} cubical-type: {X ⊢ _} so_lambda: λ2x.t[x] true: True guard: {T} so_apply: x[s] sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  varname_wf ctt-level-type_wf pi1_wf_top cubical_set_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le int_seg_wf cubical_context_wf cube-context-adjoin_wf-level-type cons_wf l_member_wf ctt-term-meaning_wf eq_var_wf equal-wf-T-base bool_wf assert_wf equal_wf bnot_wf not_wf istype-assert istype-void uiff_transitivity eqtt_to_assert assert-eq_var iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot var-term-meaning_wf cons_member csm-ap-term-meaning_wf cc-fst_wf eq_int_wf assert_of_eq_int subtype_rel_sets fset_wf nat_wf I_cube_wf names-hom_wf cube-set-restriction_wf nh-id_wf subtype_rel-equal cube-set-restriction-id iff_weakening_equal nh-comp_wf cube-set-restriction-comp istype-universe subtype_rel_set subtype_rel_product subtype_rel_dep_function subtype_rel_self subtype_rel_universe2 bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtype_rel_universe1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution productElimination thin sqequalRule dependent_pairEquality_alt hypothesis universeIsType introduction extract_by_obid isectElimination instantiate independent_pairEquality hypothesisEquality Error :memTop,  dependent_set_memberEquality_alt setElimination rename imageElimination dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation voidElimination setIsType inhabitedIsType functionIsType because_Cache equalityTransitivity equalitySymmetry baseClosed equalityIstype lambdaFormation_alt equalityElimination applyEquality productEquality functionEquality cumulativity universeEquality spreadEquality imageMemberEquality productIsType promote_hyp setEquality

Latex:
\mforall{}[ctxt:CubicalContext].  \mforall{}[lvl:\mBbbN{}4].  \mforall{}[T:\{fst(ctxt)  \mvdash{}lvl  \_\}].  \mforall{}[v:varname()].
    (update-context-lvl(ctxt;lvl;T;v)  \mmember{}  CubicalContext)



Date html generated: 2020_05_20-PM-08_08_00
Last ObjectModification: 2020_05_04-PM-00_54_48

Theory : cubical!type!theory


Home Index