Nuprl Lemma : update-context-lvl_wf
∀[ctxt:CubicalContext]. ∀[lvl:ℕ4]. ∀[T:{fst(ctxt) ⊢lvl _}]. ∀[v:varname()].
  (update-context-lvl(ctxt;lvl;T;v) ∈ CubicalContext)
Proof
Definitions occuring in Statement : 
update-context-lvl: update-context-lvl(ctxt;lvl;T;v)
, 
cubical_context: CubicalContext
, 
ctt-level-type: {X ⊢lvl _}
, 
varname: varname()
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_context: CubicalContext
, 
update-context-lvl: update-context-lvl(ctxt;lvl;T;v)
, 
pi1: fst(t)
, 
spreadn: spread3, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
ctt-level-type: {X ⊢lvl _}
, 
cubical-type: {X ⊢ _}
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
guard: {T}
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
varname_wf, 
ctt-level-type_wf, 
pi1_wf_top, 
cubical_set_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
int_seg_wf, 
cubical_context_wf, 
cube-context-adjoin_wf-level-type, 
cons_wf, 
l_member_wf, 
ctt-term-meaning_wf, 
eq_var_wf, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
equal_wf, 
bnot_wf, 
not_wf, 
istype-assert, 
istype-void, 
uiff_transitivity, 
eqtt_to_assert, 
assert-eq_var, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
var-term-meaning_wf, 
cons_member, 
csm-ap-term-meaning_wf, 
cc-fst_wf, 
eq_int_wf, 
assert_of_eq_int, 
subtype_rel_sets, 
fset_wf, 
nat_wf, 
I_cube_wf, 
names-hom_wf, 
cube-set-restriction_wf, 
nh-id_wf, 
subtype_rel-equal, 
cube-set-restriction-id, 
iff_weakening_equal, 
nh-comp_wf, 
cube-set-restriction-comp, 
istype-universe, 
subtype_rel_set, 
subtype_rel_product, 
subtype_rel_dep_function, 
subtype_rel_self, 
subtype_rel_universe2, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
subtype_rel_universe1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
dependent_pairEquality_alt, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
instantiate, 
independent_pairEquality, 
hypothesisEquality, 
Error :memTop, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
voidElimination, 
setIsType, 
inhabitedIsType, 
functionIsType, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
equalityIstype, 
lambdaFormation_alt, 
equalityElimination, 
applyEquality, 
productEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
spreadEquality, 
imageMemberEquality, 
productIsType, 
promote_hyp, 
setEquality
Latex:
\mforall{}[ctxt:CubicalContext].  \mforall{}[lvl:\mBbbN{}4].  \mforall{}[T:\{fst(ctxt)  \mvdash{}lvl  \_\}].  \mforall{}[v:varname()].
    (update-context-lvl(ctxt;lvl;T;v)  \mmember{}  CubicalContext)
Date html generated:
2020_05_20-PM-08_08_00
Last ObjectModification:
2020_05_04-PM-00_54_48
Theory : cubical!type!theory
Home
Index