Nuprl Lemma : ip-between-inner-trans
∀[rv:InnerProductSpace]. ∀[a,b,c,d:Point(rv)].  (a_b_d ⇒ b_c_d ⇒ a_b_c)
Proof
Definitions occuring in Statement : 
ip-between: a_b_c, 
inner-product-space: InnerProductSpace, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
prop: ℙ, 
ip-between: a_b_c, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
ss-eq: Error :ss-eq, 
not: ¬A, 
false: False, 
stable: Stable{P}, 
uiff: uiff(P;Q), 
top: Top, 
cand: A c∧ B, 
req_int_terms: t1 ≡ t2, 
rneq: x ≠ y, 
i-member: r ∈ I, 
rooint: (l, u), 
rdiv: (x/y), 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
squash: ↓T, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermAdd: left "+" right, 
rat_term_ind: rat_term_ind, 
rtermDivide: num "/" denom, 
rtermMultiply: left "*" right, 
rtermSubtract: left "-" right, 
rtermConstant: "const", 
rtermVar: rtermVar(var), 
pi1: fst(t), 
pi2: snd(t)
Lemmas referenced : 
ip-between_wf, 
req_witness, 
radd_wf, 
rmul_wf, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
rv-ip_wf, 
int-to-real_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
stable__ip-between, 
false_wf, 
Error :ss-sep_wf, 
not_wf, 
ip-between-iff, 
Error :ss-sep-symmetry, 
ip-between-trivial2, 
ip-between-trivial, 
istype-void, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
ip-between_functionality, 
Error :ss-eq_weakening, 
Error :ss-eq_inversion, 
rv-add_wf, 
rv-mul_wf, 
rsub_wf, 
Error :ss-eq_wf, 
i-member_wf, 
rooint_wf, 
iff_weakening_uiff, 
Error :ss-eq_functionality, 
rv-add_functionality, 
rv-mul_functionality, 
req_weakening, 
member_rooint_lemma, 
rmul_preserves_rless, 
radd-preserves-rless, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
rless-implies-rless, 
req-iff-rsub-is-0, 
rless_transitivity2, 
rleq_weakening_rless, 
itermAdd_wf, 
rless_functionality, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
rdiv_wf, 
rless_wf, 
rminus_wf, 
rinv_wf2, 
itermMinus_wf, 
req_transitivity, 
radd_functionality, 
rminus_functionality, 
rmul-rinv3, 
real_term_value_minus_lemma, 
rmul_preserves_req, 
req_functionality, 
rmul_functionality, 
rmul-rinv, 
req_wf, 
squash_wf, 
true_wf, 
real_wf, 
subtype_rel_self, 
iff_weakening_equal, 
rv-mul-linear, 
rv-add-assoc, 
uiff_transitivity, 
rv-mul-mul, 
rv-mul-add-alt, 
rv-mul-add, 
assert-rat-term-eq2, 
rtermVar_wf, 
rtermAdd_wf, 
rtermDivide_wf, 
rtermSubtract_wf, 
rtermMultiply_wf, 
rtermConstant_wf, 
ip-between-same
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
independent_isectElimination, 
unionEquality, 
functionEquality, 
productElimination, 
unionIsType, 
functionIsType, 
unionElimination, 
voidElimination, 
productIsType, 
dependent_pairFormation_alt, 
independent_pairFormation, 
promote_hyp, 
approximateComputation, 
int_eqEquality, 
closedConclusion, 
inrFormation_alt, 
equalityIstype, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d:Point(rv)].    (a\_b\_d  {}\mRightarrow{}  b\_c\_d  {}\mRightarrow{}  a\_b\_c)
Date html generated:
2020_05_20-PM-01_13_39
Last ObjectModification:
2019_12_08-PM-07_01_54
Theory : inner!product!spaces
Home
Index