Nuprl Lemma : bfs-rm0-equiv

K:RngSig. ∀S:Type. ∀b:basic-formal-sum(K;S). ∀eq:EqDecider(|K|).  (↓bfs-equiv(K;S;bfs-rm0(K;eq;b);b))


Proof




Definitions occuring in Statement :  bfs-rm0: bfs-rm0(K;eq;b) bfs-equiv: bfs-equiv(K;S;fs1;fs2) basic-formal-sum: basic-formal-sum(K;S) deq: EqDecider(T) all: x:A. B[x] squash: T universe: Type rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] squash: T exists: x:A. B[x] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top and: P ∧ Q or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b decidable: Dec(P) subtype_rel: A ⊆B bfs-rm0: bfs-rm0(K;eq;b) bag-filter: [x∈b|p[x]] filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind empty-bag: {} equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) bag-append: as bs append: as bs single-bag: {x} pi1: fst(t) deq: EqDecider(T) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) eqof: eqof(d) bnot: ¬bb ifthenelse: if then else fi  bfalse: ff assert: b rev_implies:  Q iff: ⇐⇒ Q sym: Sym(T;x,y.E[x; y]) listp: List+ bfs-reduce: bfs-reduce(K;S;as;bs) infix_ap: y bag: bag(T) quotient: x,y:A//B[x; y] true: True zero-bfs: ss bag-map: bag-map(f;bs) map: map(f;as) formal-sum-add: y
Lemmas referenced :  bfs-equiv-rel bag_to_squash_list rng_car_wf equiv_rel_wf bag_wf bfs-equiv_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf istype-nat squash_wf bfs-rm0_wf deq_wf basic-formal-sum_wf istype-universe rng_sig_wf empty-bag_wf bag-filter-append filter_cons_lemma filter_nil_lemma rng_zero_wf eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf cons_wf nil_wf list-subtype-bag subtype_rel_self implies-bfs-equiv cons_wf_listp subtype_rel_set less_than_wf length_wf bag_qinc bag-append_wf formal-sum-mul_wf1 rng_plus_wf single-bag_wf zero-bfs_wf true_wf iff_weakening_equal formal-sum-add_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality instantiate isectElimination productEquality hypothesis imageElimination productElimination promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality sqequalRule lambdaEquality_alt inhabitedIsType rename setElimination intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType imageMemberEquality baseClosed functionIsTypeImplies unionElimination hypothesis_subsumption equalityIstype because_Cache dependent_set_memberEquality_alt equalityTransitivity baseApply closedConclusion applyEquality intEquality sqequalBase universeEquality equalityElimination cumulativity independent_pairEquality voidEquality inlFormation_alt productIsType

Latex:
\mforall{}K:RngSig.  \mforall{}S:Type.  \mforall{}b:basic-formal-sum(K;S).  \mforall{}eq:EqDecider(|K|).
    (\mdownarrow{}bfs-equiv(K;S;bfs-rm0(K;eq;b);b))



Date html generated: 2019_10_31-AM-06_28_52
Last ObjectModification: 2019_08_27-PM-03_46_32

Theory : linear!algebra


Home Index