Nuprl Lemma : bfs-rm0-equiv
∀K:RngSig. ∀S:Type. ∀b:basic-formal-sum(K;S). ∀eq:EqDecider(|K|).  (↓bfs-equiv(K;S;bfs-rm0(K;eq;b);b))
Proof
Definitions occuring in Statement : 
bfs-rm0: bfs-rm0(K;eq;b)
, 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
universe: Type
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
bfs-rm0: bfs-rm0(K;eq;b)
, 
bag-filter: [x∈b|p[x]]
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
empty-bag: {}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
bag-append: as + bs
, 
append: as @ bs
, 
single-bag: {x}
, 
pi1: fst(t)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
eqof: eqof(d)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
sym: Sym(T;x,y.E[x; y])
, 
listp: A List+
, 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
infix_ap: x f y
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
true: True
, 
zero-bfs: 0 * ss
, 
bag-map: bag-map(f;bs)
, 
map: map(f;as)
, 
formal-sum-add: x + y
Lemmas referenced : 
bfs-equiv-rel, 
bag_to_squash_list, 
rng_car_wf, 
equiv_rel_wf, 
bag_wf, 
bfs-equiv_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
istype-nat, 
squash_wf, 
bfs-rm0_wf, 
deq_wf, 
basic-formal-sum_wf, 
istype-universe, 
rng_sig_wf, 
empty-bag_wf, 
bag-filter-append, 
filter_cons_lemma, 
filter_nil_lemma, 
rng_zero_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal_wf, 
cons_wf, 
nil_wf, 
list-subtype-bag, 
subtype_rel_self, 
implies-bfs-equiv, 
cons_wf_listp, 
subtype_rel_set, 
less_than_wf, 
length_wf, 
bag_qinc, 
bag-append_wf, 
formal-sum-mul_wf1, 
rng_plus_wf, 
single-bag_wf, 
zero-bfs_wf, 
true_wf, 
iff_weakening_equal, 
formal-sum-add_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
instantiate, 
isectElimination, 
productEquality, 
hypothesis, 
imageElimination, 
productElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
sqequalRule, 
lambdaEquality_alt, 
inhabitedIsType, 
rename, 
setElimination, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
imageMemberEquality, 
baseClosed, 
functionIsTypeImplies, 
unionElimination, 
hypothesis_subsumption, 
equalityIstype, 
because_Cache, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
baseApply, 
closedConclusion, 
applyEquality, 
intEquality, 
sqequalBase, 
universeEquality, 
equalityElimination, 
cumulativity, 
independent_pairEquality, 
voidEquality, 
inlFormation_alt, 
productIsType
Latex:
\mforall{}K:RngSig.  \mforall{}S:Type.  \mforall{}b:basic-formal-sum(K;S).  \mforall{}eq:EqDecider(|K|).
    (\mdownarrow{}bfs-equiv(K;S;bfs-rm0(K;eq;b);b))
Date html generated:
2019_10_31-AM-06_28_52
Last ObjectModification:
2019_08_27-PM-03_46_32
Theory : linear!algebra
Home
Index