Nuprl Lemma : rat-complex-diameter-bound

[k:ℕ]. ∀[K:ℚCube(k) List].
  ∀[x,y:ℝ^k].
    mdist(rn-prod-metric(k);x;y) ≤ rat-complex-diameter(k;K) 
    supposing ¬¬(∃c:ℚCube(k). ((c ∈ K) ∧ in-rat-cube(k;y;c) ∧ in-rat-cube(k;x;c))) 
  supposing 0 < ||K||


Proof




Definitions occuring in Statement :  rat-complex-diameter: rat-complex-diameter(k;K) in-rat-cube: in-rat-cube(k;p;c) rn-prod-metric: rn-prod-metric(n) real-vec: ^n mdist: mdist(d;x;y) rleq: x ≤ y l_member: (x ∈ l) length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q natural_number: $n rational-cube: Cube(k)
Definitions unfolded in proof :  so_apply: x[s] top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) ge: i ≥  less_than: a < b lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] nat: rat-complex-diameter: rat-complex-diameter(k;K) rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B squash: T guard: {T} rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) true: True cand: c∧ B l_member: (x ∈ l) stable: Stable{P} or: P ∨ Q false: False prop: exists: x:A. B[x] implies:  Q not: ¬A and: P ∧ Q le: A ≤ B all: x:A. B[x] rnonneg: rnonneg(x) rleq: x ≤ y uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_seg_wf int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermSubtract_wf itermAdd_wf intformless_wf istype-le decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties select_wf subtract_wf rmaximum_ub iff_weakening_equal subtype_rel_self real_wf true_wf squash_wf rleq_weakening_equal rleq_functionality_wrt_implies rat-cube-diameter_wf rat-cube-diameter-bound minimal-not-not-excluded-middle minimal-double-negation-hyp-elim rleq_wf not_wf false_wf rat-complex-diameter_wf rn-prod-metric_wf mdist_wf stable__rleq istype-nat list_wf length_wf istype-less_than real-vec_wf istype-void in-rat-cube_wf l_member_wf rational-cube_wf le_witness_for_triv
Rules used in proof :  addEquality dependent_set_memberEquality_alt independent_pairFormation int_eqEquality dependent_pairFormation_alt approximateComputation rename setElimination universeEquality instantiate baseClosed imageMemberEquality imageElimination applyEquality unionElimination lambdaFormation_alt because_Cache unionIsType voidElimination independent_functionElimination functionEquality productEquality unionEquality natural_numberEquality isectIsTypeImplies isect_memberEquality_alt universeIsType productIsType functionIsType inhabitedIsType functionIsTypeImplies independent_isectElimination equalitySymmetry hypothesis equalityTransitivity productElimination isectElimination extract_by_obid hypothesisEquality thin dependent_functionElimination lambdaEquality_alt sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].
    \mforall{}[x,y:\mBbbR{}\^{}k].
        mdist(rn-prod-metric(k);x;y)  \mleq{}  rat-complex-diameter(k;K) 
        supposing  \mneg{}\mneg{}(\mexists{}c:\mBbbQ{}Cube(k).  ((c  \mmember{}  K)  \mwedge{}  in-rat-cube(k;y;c)  \mwedge{}  in-rat-cube(k;x;c))) 
    supposing  0  <  ||K||



Date html generated: 2019_11_04-PM-04_43_53
Last ObjectModification: 2019_10_31-PM-00_01_29

Theory : real!vectors


Home Index