Nuprl Lemma : assert-rat-term-eq
∀r1,r2:rat_term().
  ((↑rat-term-eq(r1;r2))
  ⇒ (∀f:ℤ ⟶ ℝ. let p,x = rat_term_to_real(f;r1) in let q,y = rat_term_to_real(f;r2) in p ⇒ q ⇒ (x = y)))
Proof
Definitions occuring in Statement : 
rat-term-eq: rat-term-eq(r1;r2), 
rat_term_to_real: rat_term_to_real(f;t), 
rat_term: rat_term(), 
req: x = y, 
real: ℝ, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
spread: spread def, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
rat-term-eq: rat-term-eq(r1;r2), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
iPolynomial: iPolynomial(), 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
so_apply: x[s], 
req_rat_term: r ≡ p/q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
real_term_value: real_term_value(f;t), 
itermMinus: "-"num, 
int_term_ind: int_term_ind, 
itermAdd: left (+) right, 
itermMultiply: left (*) right, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
ipolynomial-term: ipolynomial-term(p), 
cons: [a / b], 
bfalse: ff
Lemmas referenced : 
rat_term_polynomial, 
rat_term_to_ipolys_wf, 
istype-int, 
real_wf, 
istype-assert, 
null_wf3, 
add-ipoly_wf, 
mul-ipoly_wf, 
minus-poly_wf, 
subtype_rel_set, 
all_wf, 
imonomial-less_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
int_seg_wf, 
length_wf, 
iMonomial_wf, 
subtype_rel_list, 
top_wf, 
req_rat_term_wf, 
ipolynomial-term_wf, 
rat_term_wf, 
rat_term_to_real_wf, 
rneq_wf, 
real_term_value_wf, 
int-to-real_wf, 
req_wf, 
uimplies_subtype, 
rdiv_wf, 
req_functionality, 
rmul_preserves_req, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
req_transitivity, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
mul-ipoly-req, 
add-ipoly-req, 
minus-poly-req, 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
add-ipoly_wf1, 
rminus_wf, 
radd_wf, 
radd_functionality, 
radd-preserves-req, 
itermAdd_wf, 
itermMinus_wf, 
real_term_value_add_lemma, 
real_term_value_minus_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
inhabitedIsType, 
productElimination, 
sqequalRule, 
functionIsType, 
universeIsType, 
applyEquality, 
because_Cache, 
lambdaEquality_alt, 
independent_isectElimination, 
setElimination, 
rename, 
imageElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
promote_hyp, 
hypothesis_subsumption
Latex:
\mforall{}r1,r2:rat\_term().
    ((\muparrow{}rat-term-eq(r1;r2))
    {}\mRightarrow{}  (\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}
                let  p,x  =  rat\_term\_to\_real(f;r1)  
                in  let  q,y  =  rat\_term\_to\_real(f;r2)  
                      in  p  {}\mRightarrow{}  q  {}\mRightarrow{}  (x  =  y)))
 Date html generated: 
2019_10_29-AM-09_54_08
 Last ObjectModification: 
2019_04_01-PM-07_02_02
Theory : reals
Home
Index