Nuprl Lemma : uniform-partition-point

[I:Interval]
  ∀[k:ℕ+]
    ∀i:ℕ1
      ((full-partition(I;uniform-partition(I;k))[i] r(k))
      (((r(k) r(i)) left-endpoint(I)) (r(i) right-endpoint(I)))) 
  supposing icompact(I)


Proof




Definitions occuring in Statement :  uniform-partition: uniform-partition(I;k) full-partition: full-partition(I;p) icompact: icompact(I) right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) interval: Interval rsub: y req: y rmul: b radd: b int-to-real: r(n) select: L[n] int_seg: {i..j-} nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] uniform-partition: uniform-partition(I;k) full-partition: full-partition(I;p) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} select: L[n] cons: [a b] nat_plus: + less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: nat: icompact: icompact(I) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B true: True subtract: m bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  rat_term_to_real: rat_term_to_real(f;t) rtermAdd: left "+" right rat_term_ind: rat_term_ind rtermMultiply: left "*" right rtermVar: rtermVar(var) rtermSubtract: left "-" right pi1: fst(t) rtermDivide: num "/" denom pi2: snd(t)
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_wf req_witness rmul_wf select_wf real_wf full-partition_wf uniform-partition_wf int_seg_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf length_of_cons_lemma length-append mklist_length subtract_wf itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma istype-le length_of_nil_lemma subtract-add-cancel decidable__lt itermAdd_wf int_term_value_add_lemma int-to-real_wf radd_wf rsub_wf left-endpoint_wf right-endpoint_wf nat_plus_wf icompact_wf interval_wf itermMultiply_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_const_lemma rless-int intformeq_wf int_formula_prop_eq_lemma rless_wf append_wf mklist_wf rdiv_wf cons_wf nil_wf le_wf squash_wf true_wf length_append subtype_rel_list top_wf iff_weakening_equal length-singleton req_wf select_cons_tl subtype_rel_self length_wf istype-less_than select_append_back minus-add minus-minus add-associates minus-one-mul add-swap add-mul-special add-commutes zero-add zero-mul assert-rat-term-eq2 rtermMultiply_wf rtermDivide_wf rtermAdd_wf rtermSubtract_wf rtermVar_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int select_append_front mklist_select
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis productElimination unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination sqequalRule universeIsType natural_numberEquality addEquality lambdaEquality_alt imageElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation dependent_set_memberEquality_alt functionIsTypeImplies inhabitedIsType isectIsTypeImplies closedConclusion inrFormation_alt applyEquality equalityTransitivity equalitySymmetry functionEquality functionIsType imageMemberEquality baseClosed universeEquality productIsType multiplyEquality equalityElimination int_eqReduceTrueSq equalityIstype promote_hyp int_eqReduceFalseSq

Latex:
\mforall{}[I:Interval]
    \mforall{}[k:\mBbbN{}\msupplus{}]
        \mforall{}i:\mBbbN{}k  +  1
            ((full-partition(I;uniform-partition(I;k))[i]  *  r(k))
            =  (((r(k)  -  r(i))  *  left-endpoint(I))  +  (r(i)  *  right-endpoint(I)))) 
    supposing  icompact(I)



Date html generated: 2019_10_29-AM-10_49_22
Last ObjectModification: 2019_04_02-AM-09_55_19

Theory : reals


Home Index