Nuprl Lemma : uniform-partition-point
∀[I:Interval]
  ∀[k:ℕ+]
    ∀i:ℕk + 1
      ((full-partition(I;uniform-partition(I;k))[i] * r(k))
      = (((r(k) - r(i)) * left-endpoint(I)) + (r(i) * right-endpoint(I)))) 
  supposing icompact(I)
Proof
Definitions occuring in Statement : 
uniform-partition: uniform-partition(I;k)
, 
full-partition: full-partition(I;p)
, 
icompact: icompact(I)
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
interval: Interval
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
select: L[n]
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
uniform-partition: uniform-partition(I;k)
, 
full-partition: full-partition(I;p)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
select: L[n]
, 
cons: [a / b]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
nat: ℕ
, 
icompact: icompact(I)
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
true: True
, 
subtract: n - m
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermAdd: left "+" right
, 
rat_term_ind: rat_term_ind, 
rtermMultiply: left "*" right
, 
rtermVar: rtermVar(var)
, 
rtermSubtract: left "-" right
, 
pi1: fst(t)
, 
rtermDivide: num "/" denom
, 
pi2: snd(t)
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_wf, 
req_witness, 
rmul_wf, 
select_wf, 
real_wf, 
full-partition_wf, 
uniform-partition_wf, 
int_seg_properties, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
length_of_cons_lemma, 
length-append, 
mklist_length, 
subtract_wf, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
istype-le, 
length_of_nil_lemma, 
subtract-add-cancel, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
int-to-real_wf, 
radd_wf, 
rsub_wf, 
left-endpoint_wf, 
right-endpoint_wf, 
nat_plus_wf, 
icompact_wf, 
interval_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
rless-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rless_wf, 
append_wf, 
mklist_wf, 
rdiv_wf, 
cons_wf, 
nil_wf, 
le_wf, 
squash_wf, 
true_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
length-singleton, 
req_wf, 
select_cons_tl, 
subtype_rel_self, 
length_wf, 
istype-less_than, 
select_append_back, 
minus-add, 
minus-minus, 
add-associates, 
minus-one-mul, 
add-swap, 
add-mul-special, 
add-commutes, 
zero-add, 
zero-mul, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermAdd_wf, 
rtermSubtract_wf, 
rtermVar_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
select_append_front, 
mklist_select
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
sqequalRule, 
universeIsType, 
natural_numberEquality, 
addEquality, 
lambdaEquality_alt, 
imageElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies, 
closedConclusion, 
inrFormation_alt, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
functionIsType, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productIsType, 
multiplyEquality, 
equalityElimination, 
int_eqReduceTrueSq, 
equalityIstype, 
promote_hyp, 
int_eqReduceFalseSq
Latex:
\mforall{}[I:Interval]
    \mforall{}[k:\mBbbN{}\msupplus{}]
        \mforall{}i:\mBbbN{}k  +  1
            ((full-partition(I;uniform-partition(I;k))[i]  *  r(k))
            =  (((r(k)  -  r(i))  *  left-endpoint(I))  +  (r(i)  *  right-endpoint(I)))) 
    supposing  icompact(I)
Date html generated:
2019_10_29-AM-10_49_22
Last ObjectModification:
2019_04_02-AM-09_55_19
Theory : reals
Home
Index