Nuprl Lemma : real-upper-bound
∀[x:ℝ]. ∀[n:ℕ+]. (x ≤ r((((x n) + 1) ÷ 2 * n) + 1))
Proof
Definitions occuring in Statement :
rleq: x ≤ y
,
int-to-real: r(n)
,
real: ℝ
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
divide: n ÷ m
,
multiply: n * m
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
real: ℝ
,
nat_plus: ℕ+
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
decidable: Dec(P)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
le: A ≤ B
,
nequal: a ≠ b ∈ T
,
subtype_rel: A ⊆r B
,
rational-approx: (x within 1/n)
,
int_nzero: ℤ-o
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rge: x ≥ y
,
rdiv: (x/y)
,
req_int_terms: t1 ≡ t2
,
nat: ℕ
,
int_lower: {...i}
,
gt: i > j
,
ge: i ≥ j
Lemmas referenced :
rational-approx-property,
rabs-difference-bound-rleq,
rational-approx_wf,
rdiv_wf,
int-to-real_wf,
rless-int,
nat_plus_properties,
decidable__lt,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
rless_wf,
le_witness_for_triv,
nat_plus_wf,
real_wf,
radd_wf,
intformeq_wf,
itermMultiply_wf,
int_formula_prop_eq_lemma,
int_term_value_mul_lemma,
int_subtype_base,
int-rdiv_wf,
nequal_wf,
rmul_preserves_rleq,
rmul_wf,
rinv_wf2,
rneq_functionality,
rmul-int,
req_weakening,
rneq-int,
set_subtype_base,
less_than_wf,
itermSubtract_wf,
itermAdd_wf,
rleq_functionality_wrt_implies,
rleq_weakening_equal,
rleq_functionality,
radd_functionality,
int-rdiv-req,
req_transitivity,
rmul_functionality,
rinv_functionality2,
req_inversion,
rinv-of-rmul,
rmul-rinv,
rmul-rinv3,
radd-int,
req-iff-rsub-is-0,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_mul_lemma,
real_term_value_add_lemma,
real_term_value_var_lemma,
real_term_value_const_lemma,
rleq-int,
div_rem_sum,
decidable__le,
rem_bounds_1,
istype-less_than,
add-is-int-iff,
intformle_wf,
int_formula_prop_le_lemma,
int_term_value_add_lemma,
false_wf,
istype-le,
multiply-is-int-iff,
rem_bounds_2,
itermMinus_wf,
int_term_value_minus_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
because_Cache,
isectElimination,
setElimination,
rename,
hypothesis,
closedConclusion,
natural_numberEquality,
independent_isectElimination,
sqequalRule,
inrFormation_alt,
productElimination,
independent_functionElimination,
unionElimination,
approximateComputation,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
universeIsType,
equalityTransitivity,
equalitySymmetry,
functionIsTypeImplies,
inhabitedIsType,
isectIsTypeImplies,
addEquality,
divideEquality,
applyEquality,
multiplyEquality,
lambdaFormation_alt,
equalityIstype,
baseApply,
baseClosed,
sqequalBase,
dependent_set_memberEquality_alt,
intEquality,
imageMemberEquality,
pointwiseFunctionality,
promote_hyp,
imageElimination
Latex:
\mforall{}[x:\mBbbR{}]. \mforall{}[n:\mBbbN{}\msupplus{}]. (x \mleq{} r((((x n) + 1) \mdiv{} 2 * n) + 1))
Date html generated:
2019_10_31-AM-06_10_37
Last ObjectModification:
2019_01_30-PM-02_01_18
Theory : reals_2
Home
Index