Nuprl Lemma : C_Struct_vs_DVALp
∀store:C_STOREp(). ∀ctyp:C_TYPE(). ∀env:C_TYPE_env(). ∀dval:C_DVALUEp().
  (C_STOREp-welltyped(env;store)
  ⇒ (↑C_Struct?(ctyp))
  ⇒ C_TYPE_vs_DVALp(env;ctyp) dval 
     = if DVp_Struct?(dval)
       then let r = map(λp.<fst(p), C_TYPE_vs_DVALp(env;snd(p))>C_Struct-fields(ctyp)) in
             let lbls = DVp_Struct-lbls(dval) in
             let g = DVp_Struct-struct(dval) in
             (∀p∈r.let a,wt = p 
                   in a ∈b lbls ∧b (wt (g a)))_b
       else ff
       fi )
Proof
Definitions occuring in Statement : 
C_STOREp-welltyped: C_STOREp-welltyped(env;store), 
C_STOREp: C_STOREp(), 
C_TYPE_vs_DVALp: C_TYPE_vs_DVALp(env;ctyp), 
DVp_Struct-struct: DVp_Struct-struct(v), 
DVp_Struct-lbls: DVp_Struct-lbls(v), 
DVp_Struct?: DVp_Struct?(v), 
C_DVALUEp: C_DVALUEp(), 
C_TYPE_env: C_TYPE_env(), 
C_Struct-fields: C_Struct-fields(v), 
C_Struct?: C_Struct?(v), 
C_TYPE: C_TYPE(), 
bl-all: (∀x∈L.P[x])_b, 
deq-member: x ∈b L, 
map: map(f;as), 
atom-deq: AtomDeq, 
band: p ∧b q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bool: 𝔹, 
let: let, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
lambda: λx.A[x], 
spread: spread def, 
pair: <a, b>, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
let: let, 
implies: P ⇒ Q, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
pi1: fst(t), 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
top: Top, 
band: p ∧b q, 
iff: P ⇐⇒ Q, 
bfalse: ff, 
C_Void: C_Void(), 
C_Struct?: C_Struct?(v), 
C_Struct-fields: C_Struct-fields(v), 
eq_atom: x =a y, 
assert: ↑b, 
false: False, 
C_Int: C_Int(), 
C_Struct: C_Struct(fields), 
C_TYPE_vs_DVALp: C_TYPE_vs_DVALp(env;ctyp), 
C_TYPE_ind: C_TYPE_ind, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
C_Array: C_Array(length;elems), 
C_Pointer: C_Pointer(to), 
has-value: (a)↓, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
ext-eq: A ≡ B, 
DVp_Null: DVp_Null(x), 
DVp_Struct?: DVp_Struct?(v), 
DVp_Struct-lbls: DVp_Struct-lbls(v), 
DVp_Struct-struct: DVp_Struct-struct(v), 
DVp_Int: DVp_Int(int), 
DVp_Pointer: DVp_Pointer(ptr), 
DVp_Array: DVp_Array(lower;upper;arr), 
DVp_Struct: DVp_Struct(lbls;struct), 
rev_implies: P ⇐ Q, 
select: L[n], 
nil: [], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
ge: i ≥ j , 
le: A ≤ B, 
less_than': less_than'(a;b), 
nat_plus: ℕ+, 
true: True, 
cons: [a / b], 
subtract: n - m
Lemmas referenced : 
select-cons-tl, 
C_TYPE_subtype_base, 
product_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
select_cons_tl_sq, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
add-member-int_seg2, 
lelt_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
add-is-int-iff, 
nat_plus_properties, 
nat_plus_wf, 
less_than_wf, 
add_nat_plus, 
int_term_value_add_lemma, 
itermAdd_wf, 
non_neg_length, 
cons_wf, 
l_all_cons, 
nil_wf, 
l_all_nil, 
map_cons_lemma, 
length_of_cons_lemma, 
map_nil_lemma, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
list_induction, 
iff_wf, 
assert-bl-all, 
assert-bdd-all, 
neg_assert_of_eq_atom, 
it_wf, 
unit_subtype_base, 
atom_subtype_base, 
assert_of_eq_atom, 
eq_atom_wf, 
C_DVALUEp-ext, 
int_seg_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
length_wf, 
int_seg_properties, 
select_wf, 
atom-value-type, 
value-type-has-value, 
length_wf_nat, 
bdd-all_wf, 
iff_imp_equal_bool, 
C_STOREp_wf, 
nat_wf, 
list_wf, 
l_all_wf2, 
true_wf, 
bfalse_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
false_wf, 
DVp_Struct-struct_wf, 
assert-deq-member, 
DVp_Struct-lbls_wf, 
atom-deq_wf, 
deq-member_wf, 
pi2_wf, 
top_wf, 
subtype_rel_product, 
pi1_wf_top, 
l_member_wf, 
C_Struct-fields_wf, 
C_TYPE_wf, 
map_wf, 
bl-all_wf, 
eqtt_to_assert, 
DVp_Struct?_wf, 
C_TYPE_vs_DVALp_wf, 
bool_wf, 
C_Struct?_wf, 
assert_wf, 
C_STOREp-welltyped_wf, 
C_DVALUEp_wf, 
C_TYPE_env_wf, 
all_wf, 
C_TYPE-induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
dependent_functionElimination, 
hypothesisEquality, 
equalityEquality, 
applyEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
productEquality, 
atomEquality, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
callbyvalueReduce, 
natural_numberEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
spreadEquality, 
hypothesis_subsumption, 
tokenEquality, 
cumulativity, 
addLevel, 
impliesFunctionality, 
baseClosed, 
addEquality, 
andLevelFunctionality, 
introduction, 
imageMemberEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}store:C\_STOREp().  \mforall{}ctyp:C\_TYPE().  \mforall{}env:C\_TYPE\_env().  \mforall{}dval:C\_DVALUEp().
    (C\_STOREp-welltyped(env;store)
    {}\mRightarrow{}  (\muparrow{}C\_Struct?(ctyp))
    {}\mRightarrow{}  C\_TYPE\_vs\_DVALp(env;ctyp)  dval 
          =  if  DVp\_Struct?(dval)
              then  let  r  =  map(\mlambda{}p.<fst(p),  C\_TYPE\_vs\_DVALp(env;snd(p))>C\_Struct-fields(ctyp))  in
                          let  lbls  =  DVp\_Struct-lbls(dval)  in
                          let  g  =  DVp\_Struct-struct(dval)  in
                          (\mforall{}p\mmember{}r.let  a,wt  =  p 
                                      in  a  \mmember{}\msubb{}  lbls  \mwedge{}\msubb{}  (wt  (g  a)))\_b
              else  ff
              fi  )
Date html generated:
2016_05_16-AM-08_51_56
Last ObjectModification:
2016_01_17-AM-09_45_08
Theory : C-semantics
Home
Index