Nuprl Lemma : polyconst_wf2

[n:ℕ]. ∀[k:ℤ].  (polyconst(n;k) ∈ polynom(n))


Proof




Definitions occuring in Statement :  polyconst: polyconst(n;k) polynom: polynom(n) nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: polyconst: polyconst(n;k) polynom: polynom(n) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  has-value: (a)↓ decidable: Dec(P) polyform-lead-nonzero: polyform-lead-nonzero(n;p) less_than: a < b squash: T less_than': less_than'(a;b) polyform: polyform(n) iff: ⇐⇒ Q int_seg: {i..j-}
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf subtract-1-ge-0 eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert intformeq_wf int_formula_prop_eq_lemma int_subtype_base bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int bool_wf cons_wf polyform_wf nil_wf polynom_wf subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma le_wf length_of_nil_lemma polyform-lead-nonzero_wf subtype_rel_list polynom_subtype_polyform value-type-has-value int-value-type polyform-value-type length_of_cons_lemma reduce_hd_cons_lemma assert_wf poly-zero_wf nat_wf list_wf list_subtype_base poly-int-val_wf2 assert-poly-zero length_upto upto_wf int_seg_wf polyconst-val
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  because_Cache unionElimination equalityElimination productElimination int_eqReduceTrueSq Error :equalityIsType2,  baseApply closedConclusion baseClosed applyEquality promote_hyp instantiate int_eqReduceFalseSq callbyvalueReduce Error :equalityIsType1,  cumulativity Error :dependent_set_memberEquality_alt,  imageElimination intEquality Error :functionIsType,  Error :setIsType,  Error :equalityIsType4

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbZ{}].    (polyconst(n;k)  \mmember{}  polynom(n))



Date html generated: 2019_06_20-PM-01_52_33
Last ObjectModification: 2018_10_07-AM-00_42_27

Theory : integer!polynomials


Home Index