Nuprl Lemma : polyconst_wf2
∀[n:ℕ]. ∀[k:ℤ].  (polyconst(n;k) ∈ polynom(n))
Proof
Definitions occuring in Statement : 
polyconst: polyconst(n;k)
, 
polynom: polynom(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
polyconst: polyconst(n;k)
, 
polynom: polynom(n)
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
has-value: (a)↓
, 
decidable: Dec(P)
, 
polyform-lead-nonzero: polyform-lead-nonzero(n;p)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
polyform: polyform(n)
, 
iff: P 
⇐⇒ Q
, 
int_seg: {i..j-}
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
subtract-1-ge-0, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
bool_wf, 
cons_wf, 
polyform_wf, 
nil_wf, 
polynom_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
le_wf, 
length_of_nil_lemma, 
polyform-lead-nonzero_wf, 
subtype_rel_list, 
polynom_subtype_polyform, 
value-type-has-value, 
int-value-type, 
polyform-value-type, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
assert_wf, 
poly-zero_wf, 
nat_wf, 
list_wf, 
list_subtype_base, 
poly-int-val_wf2, 
assert-poly-zero, 
length_upto, 
upto_wf, 
int_seg_wf, 
polyconst-val
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
because_Cache, 
unionElimination, 
equalityElimination, 
productElimination, 
int_eqReduceTrueSq, 
Error :equalityIsType2, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
promote_hyp, 
instantiate, 
int_eqReduceFalseSq, 
callbyvalueReduce, 
Error :equalityIsType1, 
cumulativity, 
Error :dependent_set_memberEquality_alt, 
imageElimination, 
intEquality, 
Error :functionIsType, 
Error :setIsType, 
Error :equalityIsType4
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbZ{}].    (polyconst(n;k)  \mmember{}  polynom(n))
Date html generated:
2019_06_20-PM-01_52_33
Last ObjectModification:
2018_10_07-AM-00_42_27
Theory : integer!polynomials
Home
Index