Nuprl Lemma : polyvar-val
∀[n:ℕ+]. ∀[v:ℤ]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ].  (l@polyvar(n;v) = if 0 ≤z v ∧b v <z n then l[v] else 0 fi  ∈ ℤ)
Proof
Definitions occuring in Statement : 
polyvar: polyvar(n;v)
, 
poly-int-val: l@p
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
band: p ∧b q
, 
nat_plus: ℕ+
, 
le_int: i ≤z j
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
polyconst: polyconst(n;k)
, 
subtract: n - m
, 
polyvar: polyvar(n;v)
, 
band: p ∧b q
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
lt_int: i <z j
, 
le_int: i ≤z j
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
cons: [a / b]
, 
true: True
, 
so_apply: x[s1;s2]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
it: ⋅
, 
nil: []
, 
select: L[n]
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
bool: 𝔹
, 
unit: Unit
, 
less_than: a < b
, 
ge: i ≥ j 
, 
assert: ↑b
, 
has-value: (a)↓
, 
nequal: a ≠ b ∈ T 
, 
cand: A c∧ B
Lemmas referenced : 
list_wf, 
list_subtype_base, 
int_subtype_base, 
istype-int, 
nat_plus_properties, 
set_subtype_base, 
equal_wf, 
length_wf, 
primrec-wf-nat-plus, 
equal-wf-base, 
less_than_wf, 
nat_plus_wf, 
subtype_base_sq, 
decidable__equal_int, 
length_of_cons_lemma, 
product_subtype_list, 
istype-void, 
istype-base, 
stuck-spread, 
length_of_nil_lemma, 
list-cases, 
le_wf, 
istype-false, 
poly_int_val_cons_cons, 
polyconst-val, 
iff_weakening_equal, 
subtype_rel_self, 
false_wf, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
add-is-int-iff, 
nil_wf, 
polyconst_wf, 
polyform_wf, 
cons_wf, 
istype-universe, 
true_wf, 
squash_wf, 
trivial-equal, 
exp1, 
one-mul, 
exp_wf2, 
add-zero, 
exp0_lemma, 
poly_int_val_nil_cons, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
base_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
le_int_wf, 
assert_of_le_int, 
non_neg_length, 
intformle_wf, 
intformless_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
decidable__lt, 
assert_wf, 
iff_weakening_uiff, 
istype-top, 
istype-le, 
add-subtract-cancel, 
value-type-has-value, 
int-value-type, 
istype-less_than, 
decidable__le, 
polyform-value-type, 
subtract_wf, 
polyvar_wf, 
select_wf, 
poly-int-val_wf, 
nequal-le-implies, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
mul-commutes, 
add-commutes, 
add-comm, 
select-cons-tl, 
add_functionality_wrt_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
setIsType, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_isectElimination, 
sqequalBase, 
equalitySymmetry, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
lambdaFormation_alt, 
rename, 
setElimination, 
because_Cache, 
isectIsType, 
lambdaEquality_alt, 
isectEquality, 
setEquality, 
natural_numberEquality, 
int_eqReduceFalseSq, 
sqleReflexivity, 
callbyvalueReduce, 
independent_functionElimination, 
cumulativity, 
instantiate, 
unionElimination, 
dependent_functionElimination, 
productElimination, 
hypothesis_subsumption, 
promote_hyp, 
equalityTransitivity, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
equalityIsType4, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
pointwiseFunctionality, 
universeEquality, 
imageElimination, 
multiplyEquality, 
lambdaEquality, 
dependent_set_memberEquality, 
lambdaFormation, 
dependent_pairFormation, 
isect_memberEquality, 
voidEquality, 
equalityElimination, 
lessCases, 
isect_memberFormation, 
axiomSqEquality, 
equalityIsType1, 
Error :memTop, 
addEquality, 
minusEquality, 
productEquality
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[v:\mBbbZ{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].
    (l@polyvar(n;v)  =  if  0  \mleq{}z  v  \mwedge{}\msubb{}  v  <z  n  then  l[v]  else  0  fi  )
Date html generated:
2020_05_19-PM-09_52_13
Last ObjectModification:
2019_12_31-PM-00_15_43
Theory : integer!polynomials
Home
Index