Nuprl Lemma : apply-alist-inr
∀[A,T:Type].
  ∀eq:EqDecider(T). ∀x:T. ∀u:Unit. ∀L:(T × A) List.
    ((apply-alist(eq;L;x) = (inr u ) ∈ (A?)) 
⇒ (¬(∃z:A. (<x, z> ∈ L))))
Proof
Definitions occuring in Statement : 
apply-alist: apply-alist(eq;L;x)
, 
l_member: (x ∈ l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
inr: inr x 
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
isl: isl(x)
, 
iff: P 
⇐⇒ Q
, 
pi1: fst(t)
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
l_member_wf, 
nil_wf, 
apply-alist_wf, 
unit_subtype_base, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-void, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
apply_alist_cons_lemma, 
cons_wf, 
ifthenelse_wf, 
eqof_wf, 
pi1_wf, 
unit_wf2, 
pi2_wf, 
istype-nat, 
list_wf, 
deq_wf, 
istype-universe, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
bfalse_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal_wf, 
istype-assert, 
cons_member, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
productEquality, 
unionElimination, 
productIsType, 
independent_pairEquality, 
equalityIstype, 
unionIsType, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
sqequalBase, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
applyLambdaEquality, 
imageElimination, 
intEquality, 
unionEquality, 
inlEquality_alt, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality, 
functionIsType, 
cumulativity
Latex:
\mforall{}[A,T:Type].
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}u:Unit.  \mforall{}L:(T  \mtimes{}  A)  List.
        ((apply-alist(eq;L;x)  =  (inr  u  ))  {}\mRightarrow{}  (\mneg{}(\mexists{}z:A.  (<x,  z>  \mmember{}  L))))
Date html generated:
2020_05_19-PM-09_41_53
Last ObjectModification:
2020_01_29-AM-11_32_06
Theory : list_1
Home
Index