Nuprl Lemma : apply-alist-inr

[A,T:Type].
  ∀eq:EqDecider(T). ∀x:T. ∀u:Unit. ∀L:(T × A) List.
    ((apply-alist(eq;L;x) (inr ) ∈ (A?))  (∃z:A. (<x, z> ∈ L))))


Proof




Definitions occuring in Statement :  apply-alist: apply-alist(eq;L;x) l_member: (x ∈ l) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q unit: Unit pair: <a, b> product: x:A × B[x] inr: inr  union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: or: P ∨ Q subtype_rel: A ⊆B cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) isl: isl(x) iff: ⇐⇒ Q pi1: fst(t) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt rev_implies:  Q bfalse: ff
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases l_member_wf nil_wf apply-alist_wf unit_subtype_base product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf apply_alist_cons_lemma cons_wf ifthenelse_wf eqof_wf pi1_wf unit_wf2 pi2_wf istype-nat list_wf deq_wf istype-universe null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse bfalse_wf assert_wf bnot_wf not_wf equal_wf istype-assert cons_member bool_cases bool_wf bool_subtype_base eqtt_to_assert safe-assert-deq eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination functionIsTypeImplies inhabitedIsType productEquality unionElimination productIsType independent_pairEquality equalityIstype unionIsType because_Cache baseApply closedConclusion baseClosed applyEquality sqequalBase equalitySymmetry promote_hyp hypothesis_subsumption productElimination dependent_set_memberEquality_alt instantiate equalityTransitivity applyLambdaEquality imageElimination intEquality unionEquality inlEquality_alt isect_memberEquality_alt isectIsTypeImplies universeEquality functionIsType cumulativity

Latex:
\mforall{}[A,T:Type].
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}u:Unit.  \mforall{}L:(T  \mtimes{}  A)  List.
        ((apply-alist(eq;L;x)  =  (inr  u  ))  {}\mRightarrow{}  (\mneg{}(\mexists{}z:A.  (<x,  z>  \mmember{}  L))))



Date html generated: 2020_05_19-PM-09_41_53
Last ObjectModification: 2020_01_29-AM-11_32_06

Theory : list_1


Home Index