Nuprl Lemma : rm-zeros_wf

[n:ℕ+]. ∀[p:polynom(n 1) List].  (rm-zeros(n 1;p) ∈ polynom(n))


Proof




Definitions occuring in Statement :  rm-zeros: rm-zeros(n;p) polynom: polynom(n) list: List nat_plus: + uall: [x:A]. B[x] member: t ∈ T subtract: m natural_number: $n
Definitions unfolded in proof :  nequal: a ≠ b ∈  assert: b bnot: ¬bb polyform: polyform(n) polyform-lead-nonzero: polyform-lead-nonzero(n;p) rev_implies:  Q iff: ⇐⇒ Q bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt unit: Unit bool: 𝔹 less_than': less_than'(a;b) squash: T less_than: a < b sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] it: nil: [] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] colength: colength(L) cons: [a b] so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) rm-zeros: rm-zeros(n;p) guard: {T} subtype_rel: A ⊆B ge: i ≥  prop: and: P ∧ Q top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] nat_plus: + nat: member: t ∈ T polynom: polynom(n) uall: [x:A]. B[x]
Lemmas referenced :  length_wf reduce_hd_cons_lemma length_of_cons_lemma cons_wf poly-zero_wf polynom_subtype_polyform polyform_wf subtype_rel_list neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal length_of_nil_lemma nat_plus_subtype_nat polyform-lead-nonzero_wf nil_wf assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity list_ind_cons_lemma decidable__equal_int int_subtype_base set_subtype_base subtype_base_sq equal_wf int_term_value_add_lemma itermAdd_wf spread_cons_lemma product_subtype_list list_ind_nil_lemma list-cases less_than_irreflexivity less_than_transitivity1 colength_wf_list nat_wf less_than_wf ge_wf nat_properties not_wf bnot_wf int_formula_prop_eq_lemma intformeq_wf assert_wf equal-wf-T-base bool_wf eq_int_wf nat_plus_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties subtract_wf polynom_wf list_wf
Rules used in proof :  impliesFunctionality equalityElimination imageElimination cumulativity instantiate addEquality productElimination hypothesis_subsumption promote_hyp applyLambdaEquality applyEquality axiomEquality independent_functionElimination intWeakElimination lambdaFormation because_Cache baseClosed equalitySymmetry equalityTransitivity computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination unionElimination dependent_functionElimination natural_numberEquality hypothesisEquality rename setElimination dependent_set_memberEquality thin isectElimination extract_by_obid introduction hypothesis sqequalHypSubstitution cut sqequalRule isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[p:polynom(n  -  1)  List].    (rm-zeros(n  -  1;p)  \mmember{}  polynom(n))



Date html generated: 2017_04_17-AM-09_06_11
Last ObjectModification: 2017_04_13-PM-02_12_08

Theory : list_1


Home Index