Nuprl Lemma : index-min_wf
∀[zs:ℤ List+]. (index-min(zs) ∈ i:ℕ||zs|| × {x:ℤ| (x = zs[i] ∈ ℤ) ∧ (∀z:ℤ. ((z ∈ zs) 
⇒ (x ≤ z)))} )
Proof
Definitions occuring in Statement : 
index-min: index-min(zs)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
listp: A List+
, 
length: ||as||
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
listp: A List+
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
or: P ∨ Q
, 
cons: [a / b]
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
subtype_rel: A ⊆r B
, 
select: L[n]
, 
top: Top
, 
index-min: index-min(zs)
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
has-value: (a)↓
, 
gt: i > j
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
istype-nat, 
colength_wf_list, 
istype-void, 
istype-le, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
spread_cons_lemma, 
sq_stable__le, 
decidable__equal_int, 
subtract_wf, 
istype-false, 
not-equal-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
minus-minus, 
le_weakening2, 
listp_wf, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
less_than_wf, 
length_wf, 
cons_wf, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
lelt_wf, 
l_member_wf, 
nil_wf, 
select_wf, 
length-singleton, 
member_singleton, 
le_weakening, 
non_neg_length, 
length_wf_nat, 
istype-sqequal, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
not-lt-2, 
minus-zero, 
add-zero, 
omega-shadow, 
decidable__lt, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
not-le-2, 
le_witness_for_triv, 
sq_stable__all, 
sq_stable__equal, 
all_wf, 
equal_wf, 
sq_stable__and, 
list_subtype_base, 
add_nat_plus, 
int_seg_properties, 
decidable__le, 
cons_member, 
value-type-has-value, 
int-value-type, 
select_cons_tl_sq2, 
int_seg_subtype_nat, 
less-iff-le, 
mul-distributes, 
mul-associates, 
mul-commutes, 
le-add-cancel-alt, 
not-gt-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lambdaFormation_alt, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
intWeakElimination, 
independent_pairFormation, 
productElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
intEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
Error :memTop, 
equalityIstype, 
dependent_set_memberEquality_alt, 
because_Cache, 
instantiate, 
cumulativity, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
addEquality, 
minusEquality, 
baseApply, 
closedConclusion, 
applyEquality, 
sqequalBase, 
isect_memberEquality_alt, 
dependent_pairEquality_alt, 
productIsType, 
equalityIsType4, 
functionIsType, 
setIsType, 
dependent_pairFormation_alt, 
multiplyEquality, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
isectIsTypeImplies, 
functionEquality, 
callbyvalueReduce
Latex:
\mforall{}[zs:\mBbbZ{}  List\msupplus{}].  (index-min(zs)  \mmember{}  i:\mBbbN{}||zs||  \mtimes{}  \{x:\mBbbZ{}|  (x  =  zs[i])  \mwedge{}  (\mforall{}z:\mBbbZ{}.  ((z  \mmember{}  zs)  {}\mRightarrow{}  (x  \mleq{}  z)))\}  )
Date html generated:
2020_05_19-PM-09_38_08
Last ObjectModification:
2020_01_04-PM-07_59_22
Theory : omega
Home
Index