Nuprl Lemma : index-min_wf

[zs:ℤ List+]. (index-min(zs) ∈ i:ℕ||zs|| × {x:ℤ(x zs[i] ∈ ℤ) ∧ (∀z:ℤ((z ∈ zs)  (x ≤ z)))} )


Proof




Definitions occuring in Statement :  index-min: index-min(zs) l_member: (x ∈ l) select: L[n] listp: List+ length: ||as|| int_seg: {i..j-} uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T listp: List+ all: x:A. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: or: P ∨ Q cons: [a b] less_than': less_than'(a;b) not: ¬A colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True subtype_rel: A ⊆B select: L[n] top: Top index-min: index-min(zs) so_lambda: so_lambda3 so_apply: x[s1;s2;s3] int_seg: {i..j-} lelt: i ≤ j < k exists: x:A. B[x] nat_plus: + bool: 𝔹 unit: Unit btrue: tt bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b has-value: (a)↓ gt: i > j
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero istype-nat colength_wf_list istype-void istype-le list_wf subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma sq_stable__le decidable__equal_int subtract_wf istype-false not-equal-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top le_antisymmetry_iff add_functionality_wrt_le add-commutes zero-add le-add-cancel minus-minus le_weakening2 listp_wf length_of_nil_lemma stuck-spread istype-base less_than_wf length_wf cons_wf length_of_cons_lemma list_ind_cons_lemma lelt_wf l_member_wf nil_wf select_wf length-singleton member_singleton le_weakening non_neg_length length_wf_nat istype-sqequal le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul not-lt-2 minus-zero add-zero omega-shadow decidable__lt lt_int_wf eqtt_to_assert assert_of_lt_int istype-top eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf not-le-2 le_witness_for_triv sq_stable__all sq_stable__equal all_wf equal_wf sq_stable__and list_subtype_base add_nat_plus int_seg_properties decidable__le cons_member value-type-has-value int-value-type select_cons_tl_sq2 int_seg_subtype_nat less-iff-le mul-distributes mul-associates mul-commutes le-add-cancel-alt not-gt-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename lambdaFormation_alt extract_by_obid isectElimination hypothesisEquality hypothesis sqequalRule intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination universeIsType lambdaEquality_alt dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType intEquality unionElimination promote_hyp hypothesis_subsumption Error :memTop,  equalityIstype dependent_set_memberEquality_alt because_Cache instantiate cumulativity imageMemberEquality baseClosed applyLambdaEquality addEquality minusEquality baseApply closedConclusion applyEquality sqequalBase isect_memberEquality_alt dependent_pairEquality_alt productIsType equalityIsType4 functionIsType setIsType dependent_pairFormation_alt multiplyEquality equalityElimination lessCases axiomSqEquality isectIsTypeImplies functionEquality callbyvalueReduce

Latex:
\mforall{}[zs:\mBbbZ{}  List\msupplus{}].  (index-min(zs)  \mmember{}  i:\mBbbN{}||zs||  \mtimes{}  \{x:\mBbbZ{}|  (x  =  zs[i])  \mwedge{}  (\mforall{}z:\mBbbZ{}.  ((z  \mmember{}  zs)  {}\mRightarrow{}  (x  \mleq{}  z)))\}  )



Date html generated: 2020_05_19-PM-09_38_08
Last ObjectModification: 2020_01_04-PM-07_59_22

Theory : omega


Home Index