Nuprl Lemma : set_leq_complement

[s:LOSet]. ∀[a,b:|s|].  uiff(¬(a ≤ b);b <a)


Proof




Definitions occuring in Statement :  loset: LOSet set_lt: a <b set_leq: a ≤ b set_car: |p| uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a set_lt: a <b loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet implies:  Q prop: not: ¬A false: False rev_implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q all: x:A. B[x] ulinorder: UniformLinorder(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) cand: c∧ B set_leq: a ≤ b infix_ap: y upreorder: UniformPreorder(T;x,y.R[x; y])
Lemmas referenced :  assert_witness set_blt_wf not_wf set_leq_wf set_lt_wf set_car_wf loset_wf iff_weakening_uiff strict_part_wf set_lt_is_sp_of_leq uiff_wf ulinorder_le_neg loset_properties poset_properties qoset_properties set_leq_trans upreorder_wf set_le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality lemma_by_obid setElimination rename hypothesis independent_functionElimination equalityTransitivity equalitySymmetry lambdaEquality dependent_functionElimination because_Cache voidElimination addLevel independent_pairFormation independent_isectElimination cumulativity dependent_set_memberEquality applyEquality

Latex:
\mforall{}[s:LOSet].  \mforall{}[a,b:|s|].    uiff(\mneg{}(a  \mleq{}  b);b  <s  a)



Date html generated: 2016_05_15-PM-00_05_34
Last ObjectModification: 2015_12_26-PM-11_28_17

Theory : sets_1


Home Index