Nuprl Lemma : rng_lsum_when_swap
∀r:Rng. ∀A:Type. ∀f:A ⟶ |r|. ∀b:𝔹. ∀as:A List.
  ((Σ{A,r} x ∈ as. (when b. f[x])) = (when b. (Σ{A,r} x ∈ as. f[x])) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{A,r} x ∈ as. f[x]
, 
list: T List
, 
bool: 𝔹
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng_when: rng_when, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
rng_lsum: Σ{A,r} x ∈ as. f[x]
, 
top: Top
, 
add_grp_of_rng: r↓+gp
, 
grp_id: e
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
grp_op: *
, 
infix_ap: x f y
Lemmas referenced : 
list_induction, 
equal_wf, 
rng_car_wf, 
rng_lsum_wf, 
rng_when_wf, 
list_wf, 
mon_for_nil_lemma, 
squash_wf, 
true_wf, 
rng_zero_wf, 
rng_when_of_zero, 
iff_weakening_equal, 
mon_for_cons_lemma, 
rng_plus_wf, 
infix_ap_wf, 
rng_when_thru_plus, 
bool_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
dependent_functionElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
functionEquality
Latex:
\mforall{}r:Rng.  \mforall{}A:Type.  \mforall{}f:A  {}\mrightarrow{}  |r|.  \mforall{}b:\mBbbB{}.  \mforall{}as:A  List.
    ((\mSigma{}\{A,r\}  x  \mmember{}  as.  (when  b.  f[x]))  =  (when  b.  (\mSigma{}\{A,r\}  x  \mmember{}  as.  f[x])))
Date html generated:
2017_10_01-AM-10_00_59
Last ObjectModification:
2017_03_03-PM-01_03_28
Theory : list_3
Home
Index