Nuprl Lemma : rng_lsum_when_swap

r:Rng. ∀A:Type. ∀f:A ⟶ |r|. ∀b:𝔹. ∀as:A List.
  ((Σ{A,r} x ∈ as. (when b. f[x])) (when b. {A,r} x ∈ as. f[x])) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{A,r} x ∈ as. f[x] list: List bool: 𝔹 so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng_when: rng_when rng: Rng rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] rng: Rng so_apply: x[s] implies:  Q rng_lsum: Σ{A,r} x ∈ as. f[x] top: Top add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) pi1: fst(t) squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q grp_op: * infix_ap: y
Lemmas referenced :  list_induction equal_wf rng_car_wf rng_lsum_wf rng_when_wf list_wf mon_for_nil_lemma squash_wf true_wf rng_zero_wf rng_when_of_zero iff_weakening_equal mon_for_cons_lemma rng_plus_wf infix_ap_wf rng_when_thru_plus bool_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality setElimination rename hypothesis dependent_functionElimination cumulativity applyEquality functionExtensionality independent_functionElimination isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination functionEquality

Latex:
\mforall{}r:Rng.  \mforall{}A:Type.  \mforall{}f:A  {}\mrightarrow{}  |r|.  \mforall{}b:\mBbbB{}.  \mforall{}as:A  List.
    ((\mSigma{}\{A,r\}  x  \mmember{}  as.  (when  b.  f[x]))  =  (when  b.  (\mSigma{}\{A,r\}  x  \mmember{}  as.  f[x])))



Date html generated: 2017_10_01-AM-10_00_59
Last ObjectModification: 2017_03_03-PM-01_03_28

Theory : list_3


Home Index