Nuprl Lemma : mset_mem_map

s,s':DSet. ∀f:|s| ⟶ |s'|. ∀x:|s|. ∀a:MSet{s}.  ((↑(x ∈b a))  (↑((f x) ∈b msmap{s,s'}(f;a))))


Proof




Definitions occuring in Statement :  mset_map: msmap{s,s'}(f;a) mset_mem: mset_mem mset: MSet{s} assert: b all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] mset_mem: mset_mem mk_mset: mk_mset(as) uall: [x:A]. B[x] member: t ∈ T dset: DSet uimplies: supposing a squash: T prop: true: True guard: {T} uiff: uiff(P;Q) and: P ∧ Q so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] mset_map: msmap{s,s'}(f;a) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  mem_map list_wf all_wf decidable__assert sq_stable_from_decidable sq_stable__all assert_wf all_mset_elim mset_map_char dset_wf mset_wf true_wf squash_wf set_car_wf map_wf mem_wf mk_mset_wf mset_map_wf mset_mem_wf assert_functionality_wrt_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut addLevel allFunctionality impliesFunctionality sqequalHypSubstitution sqequalRule hypothesis lemma_by_obid isectElimination thin dependent_functionElimination hypothesisEquality applyEquality setElimination rename independent_isectElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed productElimination functionEquality independent_functionElimination levelHypothesis allLevelFunctionality impliesLevelFunctionality

Latex:
\mforall{}s,s':DSet.  \mforall{}f:|s|  {}\mrightarrow{}  |s'|.  \mforall{}x:|s|.  \mforall{}a:MSet\{s\}.    ((\muparrow{}(x  \mmember{}\msubb{}  a))  {}\mRightarrow{}  (\muparrow{}((f  x)  \mmember{}\msubb{}  msmap\{s,s'\}(f;a))))



Date html generated: 2016_05_16-AM-07_50_09
Last ObjectModification: 2016_01_16-PM-11_39_22

Theory : mset


Home Index