Nuprl Lemma : mset_mem_map
∀s,s':DSet. ∀f:|s| ⟶ |s'|. ∀x:|s|. ∀a:MSet{s}.  ((↑(x ∈b a)) 
⇒ (↑((f x) ∈b msmap{s,s'}(f;a))))
Proof
Definitions occuring in Statement : 
mset_map: msmap{s,s'}(f;a)
, 
mset_mem: mset_mem, 
mset: MSet{s}
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
mset_mem: mset_mem, 
mk_mset: mk_mset(as)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
mset_map: msmap{s,s'}(f;a)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
mem_map, 
list_wf, 
all_wf, 
decidable__assert, 
sq_stable_from_decidable, 
sq_stable__all, 
assert_wf, 
all_mset_elim, 
mset_map_char, 
dset_wf, 
mset_wf, 
true_wf, 
squash_wf, 
set_car_wf, 
map_wf, 
mem_wf, 
mk_mset_wf, 
mset_map_wf, 
mset_mem_wf, 
assert_functionality_wrt_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
independent_isectElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
functionEquality, 
independent_functionElimination, 
levelHypothesis, 
allLevelFunctionality, 
impliesLevelFunctionality
Latex:
\mforall{}s,s':DSet.  \mforall{}f:|s|  {}\mrightarrow{}  |s'|.  \mforall{}x:|s|.  \mforall{}a:MSet\{s\}.    ((\muparrow{}(x  \mmember{}\msubb{}  a))  {}\mRightarrow{}  (\muparrow{}((f  x)  \mmember{}\msubb{}  msmap\{s,s'\}(f;a))))
Date html generated:
2016_05_16-AM-07_50_09
Last ObjectModification:
2016_01_16-PM-11_39_22
Theory : mset
Home
Index