Nuprl Lemma : mem_map

s,s':DSet. ∀f:|s| ⟶ |s'|. ∀x:|s|. ∀as:|s| List.  ((↑(x ∈b as))  (↑((f x) ∈b map(f;as))))


Proof




Definitions occuring in Statement :  mem: a ∈b as map: map(f;as) list: List assert: b all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: dset: DSet so_apply: x[s] top: Top assert: b ifthenelse: if then else fi  bfalse: ff false: False infix_ap: y iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q rev_implies:  Q squash: T guard: {T} true: True subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  list_induction assert_wf mem_wf map_wf set_car_wf mem_nil_lemma istype-void map_nil_lemma mem_cons_lemma map_cons_lemma iff_transitivity bor_wf set_eq_wf or_wf equal_wf iff_weakening_uiff assert_of_bor assert_of_dset_eq list_wf dset_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality_alt functionEquality dependent_functionElimination hypothesisEquality hypothesis applyEquality setElimination rename universeIsType independent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation unionElimination inlFormation_alt productElimination inrFormation_alt equalityIsType1 unionIsType functionIsType inhabitedIsType imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed instantiate independent_isectElimination

Latex:
\mforall{}s,s':DSet.  \mforall{}f:|s|  {}\mrightarrow{}  |s'|.  \mforall{}x:|s|.  \mforall{}as:|s|  List.    ((\muparrow{}(x  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (\muparrow{}((f  x)  \mmember{}\msubb{}  map(f;as))))



Date html generated: 2019_10_16-PM-01_04_11
Last ObjectModification: 2018_10_08-AM-11_03_18

Theory : list_2


Home Index