Nuprl Lemma : mem_map
∀s,s':DSet. ∀f:|s| ⟶ |s'|. ∀x:|s|. ∀as:|s| List. ((↑(x ∈b as))
⇒ (↑((f x) ∈b map(f;as))))
Proof
Definitions occuring in Statement :
mem: a ∈b as
,
map: map(f;as)
,
list: T List
,
assert: ↑b
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
dset: DSet
,
so_apply: x[s]
,
top: Top
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
false: False
,
infix_ap: x f y
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
or: P ∨ Q
,
rev_implies: P
⇐ Q
,
squash: ↓T
,
guard: {T}
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
Lemmas referenced :
list_induction,
assert_wf,
mem_wf,
map_wf,
set_car_wf,
mem_nil_lemma,
istype-void,
map_nil_lemma,
mem_cons_lemma,
map_cons_lemma,
iff_transitivity,
bor_wf,
set_eq_wf,
or_wf,
equal_wf,
iff_weakening_uiff,
assert_of_bor,
assert_of_dset_eq,
list_wf,
dset_wf,
squash_wf,
true_wf,
istype-universe,
subtype_rel_self,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
because_Cache,
sqequalRule,
lambdaEquality_alt,
functionEquality,
dependent_functionElimination,
hypothesisEquality,
hypothesis,
applyEquality,
setElimination,
rename,
universeIsType,
independent_functionElimination,
isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
unionElimination,
inlFormation_alt,
productElimination,
inrFormation_alt,
equalityIsType1,
unionIsType,
functionIsType,
inhabitedIsType,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
instantiate,
independent_isectElimination
Latex:
\mforall{}s,s':DSet. \mforall{}f:|s| {}\mrightarrow{} |s'|. \mforall{}x:|s|. \mforall{}as:|s| List. ((\muparrow{}(x \mmember{}\msubb{} as)) {}\mRightarrow{} (\muparrow{}((f x) \mmember{}\msubb{} map(f;as))))
Date html generated:
2019_10_16-PM-01_04_11
Last ObjectModification:
2018_10_08-AM-11_03_18
Theory : list_2
Home
Index