Nuprl Lemma : mem_map
∀s,s':DSet. ∀f:|s| ⟶ |s'|. ∀x:|s|. ∀as:|s| List.  ((↑(x ∈b as)) 
⇒ (↑((f x) ∈b map(f;as))))
Proof
Definitions occuring in Statement : 
mem: a ∈b as
, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
dset: DSet
, 
so_apply: x[s]
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
false: False
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
guard: {T}
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
list_induction, 
assert_wf, 
mem_wf, 
map_wf, 
set_car_wf, 
mem_nil_lemma, 
istype-void, 
map_nil_lemma, 
mem_cons_lemma, 
map_cons_lemma, 
iff_transitivity, 
bor_wf, 
set_eq_wf, 
or_wf, 
equal_wf, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_dset_eq, 
list_wf, 
dset_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
universeIsType, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
unionElimination, 
inlFormation_alt, 
productElimination, 
inrFormation_alt, 
equalityIsType1, 
unionIsType, 
functionIsType, 
inhabitedIsType, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}s,s':DSet.  \mforall{}f:|s|  {}\mrightarrow{}  |s'|.  \mforall{}x:|s|.  \mforall{}as:|s|  List.    ((\muparrow{}(x  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (\muparrow{}((f  x)  \mmember{}\msubb{}  map(f;as))))
Date html generated:
2019_10_16-PM-01_04_11
Last ObjectModification:
2018_10_08-AM-11_03_18
Theory : list_2
Home
Index