Nuprl Lemma : mset_mem_sum

s:DSet. ∀a,b:MSet{s}. ∀u:|s|.  u ∈b (u ∈b a) ∨b(u ∈b b)


Proof




Definitions occuring in Statement :  mset_mem: mset_mem mset_sum: b mset: MSet{s} bor: p ∨bq bool: 𝔹 all: x:A. B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet mk_mset: mk_mset(as) mset_sum: b mset_mem: mset_mem so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: subtype_rel: A ⊆B
Lemmas referenced :  mem_append set_car_wf list_wf dset_wf all_mset_elim all_wf equal_wf bool_wf mset_mem_wf mset_sum_wf mk_mset_wf bor_wf mset_wf sq_stable__all sq_stable__equal mem_wf append_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination setElimination rename addLevel sqequalRule allFunctionality lambdaEquality independent_functionElimination because_Cache productElimination levelHypothesis allLevelFunctionality cumulativity instantiate applyEquality universeEquality

Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.  \mforall{}u:|s|.    u  \mmember{}\msubb{}  a  +  b  =  (u  \mmember{}\msubb{}  a)  \mvee{}\msubb{}(u  \mmember{}\msubb{}  b)



Date html generated: 2016_05_16-AM-07_49_46
Last ObjectModification: 2015_12_28-PM-06_01_39

Theory : mset


Home Index