Nuprl Lemma : mem_append

s:DSet. ∀as,bs:|s| List. ∀c:|s|.  c ∈b (as bs) (c ∈b as) ∨b(c ∈b bs)


Proof




Definitions occuring in Statement :  mem: a ∈b as append: as bs list: List bor: p ∨bq bool: 𝔹 all: x:A. B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T dset: DSet uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q prop: gt: i > j or: P ∨ Q uiff: uiff(P;Q) true: True decidable: Dec(P) false: False less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top ge: i ≥  le: A ≤ B subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  iff_imp_equal_bool mem_wf append_wf set_car_wf bor_wf mem_iff_count_nzero assert_wf gt_wf count_wf iff_wf or_wf assert_of_bor list_wf dset_wf decidable__or less_than_wf decidable__lt add-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformor_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_or_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf false_wf non_neg_length count_bounds intformle_wf int_formula_prop_le_lemma squash_wf true_wf count_append subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality setElimination rename hypothesis independent_isectElimination addLevel productElimination independent_pairFormation impliesFunctionality because_Cache independent_functionElimination orFunctionality natural_numberEquality orLevelFunctionality unionElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination sqequalRule baseApply closedConclusion baseClosed approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality addEquality applyEquality universeEquality imageMemberEquality instantiate

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  (as  @  bs)  =  (c  \mmember{}\msubb{}  as)  \mvee{}\msubb{}(c  \mmember{}\msubb{}  bs)



Date html generated: 2018_05_22-AM-07_45_26
Last ObjectModification: 2018_05_19-AM-08_32_41

Theory : list_2


Home Index