Nuprl Lemma : free_abmon_endomorph_is_id
∀S:DSet. ∀M:FAbMon(S). ∀f:MonHom(M.mon,M.mon).
  (((f o M.inj) = M.inj ∈ (|S| ⟶ |M.mon|)) 
⇒ (f = Id{|M.mon|} ∈ (|M.mon| ⟶ |M.mon|)))
Proof
Definitions occuring in Statement : 
free_abmon_inj: f.inj
, 
free_abmon_mon: f.mon
, 
free_abmonoid: FAbMon(S)
, 
compose: f o g
, 
tidentity: Id{T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
monoid_hom: MonHom(M1,M2)
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
subtype_rel: A ⊆r B
, 
monoid_hom: MonHom(M1,M2)
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
squash: ↓T
, 
abmonoid: AbMon
, 
mon: Mon
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
set_car_wf, 
grp_car_wf, 
free_abmon_mon_wf, 
compose_wf, 
free_abmon_inj_wf, 
monoid_hom_wf, 
free_abmonoid_wf, 
dset_wf, 
free_abmon_umap_properties, 
tidentity_wf_for_mon_hom, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
subtype_rel_transitivity, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
squash_wf, 
true_wf, 
comp_id_l, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
instantiate, 
independent_isectElimination, 
independent_functionElimination, 
lambdaEquality, 
imageElimination, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}S:DSet.  \mforall{}M:FAbMon(S).  \mforall{}f:MonHom(M.mon,M.mon).    (((f  o  M.inj)  =  M.inj)  {}\mRightarrow{}  (f  =  Id\{|M.mon|\}))
Date html generated:
2017_10_01-AM-10_01_10
Last ObjectModification:
2017_03_03-PM-01_03_30
Theory : polynom_1
Home
Index