Nuprl Lemma : free_abmon_endomorph_is_id

S:DSet. ∀M:FAbMon(S). ∀f:MonHom(M.mon,M.mon).
  (((f M.inj) M.inj ∈ (|S| ⟶ |M.mon|))  (f Id{|M.mon|} ∈ (|M.mon| ⟶ |M.mon|)))


Proof




Definitions occuring in Statement :  free_abmon_inj: f.inj free_abmon_mon: f.mon free_abmonoid: FAbMon(S) compose: g tidentity: Id{T} all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] dset: DSet subtype_rel: A ⊆B monoid_hom: MonHom(M1,M2) and: P ∧ Q guard: {T} uimplies: supposing a squash: T abmonoid: AbMon mon: Mon true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf set_car_wf grp_car_wf free_abmon_mon_wf compose_wf free_abmon_inj_wf monoid_hom_wf free_abmonoid_wf dset_wf free_abmon_umap_properties tidentity_wf_for_mon_hom iabmonoid_subtype_imon abmonoid_subtype_iabmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf imon_wf squash_wf true_wf comp_id_l iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality setElimination rename because_Cache dependent_functionElimination hypothesisEquality applyEquality sqequalRule equalityTransitivity equalitySymmetry productElimination instantiate independent_isectElimination independent_functionElimination lambdaEquality imageElimination universeEquality equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}S:DSet.  \mforall{}M:FAbMon(S).  \mforall{}f:MonHom(M.mon,M.mon).    (((f  o  M.inj)  =  M.inj)  {}\mRightarrow{}  (f  =  Id\{|M.mon|\}))



Date html generated: 2017_10_01-AM-10_01_10
Last ObjectModification: 2017_03_03-PM-01_03_30

Theory : polynom_1


Home Index