Nuprl Lemma : before_all_imp_before
∀a:LOSet. ∀b:AbMon. ∀k:|a|. ∀ps:(|a| × |b|) List.
  ((↑(∀bx(:|a|) ∈ map(λz.(fst(z));ps). (x <b k))) 
⇒ (↑before(k;map(λz.(fst(z));ps))))
Proof
Definitions occuring in Statement : 
before: before(u;ps)
, 
ball: ball, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
, 
abmonoid: AbMon
, 
grp_car: |g|
, 
loset: LOSet
, 
set_blt: a <b b
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
abmonoid: AbMon
, 
mon: Mon
, 
or: P ∨ Q
, 
cons: [a / b]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
, 
and: P ∧ Q
, 
pi1: fst(t)
, 
ball: ball, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
band: p ∧b q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
set_car_wf, 
grp_car_wf, 
list-cases, 
product_subtype_list, 
list_wf, 
abmonoid_wf, 
loset_wf, 
map_nil_lemma, 
ball_nil_lemma, 
before_nil_lemma, 
true_wf, 
map_cons_lemma, 
ball_cons_lemma, 
before_cons_lemma, 
set_lt_wf, 
assert_wf, 
ball_wf, 
map_wf, 
set_blt_wf, 
iff_transitivity, 
bool_wf, 
eqtt_to_assert, 
assert_of_set_lt, 
equal_wf, 
iff_weakening_uiff, 
assert_of_band, 
pi1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
productEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
because_Cache, 
lambdaEquality, 
addLevel, 
impliesFunctionality, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairEquality, 
independent_pairFormation, 
functionEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbMon.  \mforall{}k:|a|.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.
    ((\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}z.(fst(z));ps).  (x  <\msubb{}  k)))  {}\mRightarrow{}  (\muparrow{}before(k;map(\mlambda{}z.(fst(z));ps))))
Date html generated:
2017_10_01-AM-10_01_43
Last ObjectModification:
2017_03_03-PM-01_03_57
Theory : polynom_2
Home
Index