Nuprl Lemma : before_all_imp_before

a:LOSet. ∀b:AbMon. ∀k:|a|. ∀ps:(|a| × |b|) List.
  ((↑(∀bx(:|a|) ∈ map(λz.(fst(z));ps). (x <b k)))  (↑before(k;map(λz.(fst(z));ps))))


Proof




Definitions occuring in Statement :  before: before(u;ps) ball: ball map: map(f;as) list: List assert: b pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] product: x:A × B[x] abmonoid: AbMon grp_car: |g| loset: LOSet set_blt: a <b b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abmonoid: AbMon mon: Mon or: P ∨ Q cons: [a b] top: Top so_lambda: λ2x.t[x] so_apply: x[s] assert: b ifthenelse: if then else fi  btrue: tt implies:  Q true: True prop: and: P ∧ Q pi1: fst(t) ball: ball bool: 𝔹 unit: Unit it: band: p ∧b q uiff: uiff(P;Q) uimplies: supposing a bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  set_car_wf grp_car_wf list-cases product_subtype_list list_wf abmonoid_wf loset_wf map_nil_lemma ball_nil_lemma before_nil_lemma true_wf map_cons_lemma ball_cons_lemma before_cons_lemma set_lt_wf assert_wf ball_wf map_wf set_blt_wf iff_transitivity bool_wf eqtt_to_assert assert_of_set_lt equal_wf iff_weakening_uiff assert_of_band pi1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination sqequalRule isect_memberEquality voidElimination voidEquality natural_numberEquality because_Cache lambdaEquality addLevel impliesFunctionality equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination independent_pairEquality independent_pairFormation functionEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbMon.  \mforall{}k:|a|.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.
    ((\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}z.(fst(z));ps).  (x  <\msubb{}  k)))  {}\mRightarrow{}  (\muparrow{}before(k;map(\mlambda{}z.(fst(z));ps))))



Date html generated: 2017_10_01-AM-10_01_43
Last ObjectModification: 2017_03_03-PM-01_03_57

Theory : polynom_2


Home Index