Nuprl Lemma : omral_action_times
∀g:OCMon. ∀r:CDRng. ∀v,w:|r|. ∀ps:|omral(g;r)|.  (((v * w) ⋅⋅ ps) = (v ⋅⋅ (w ⋅⋅ ps)) ∈ |omral(g;r)|)
Proof
Definitions occuring in Statement : 
omral_action: v ⋅⋅ ps
, 
omralist: omral(g;r)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
cdrng: CDRng
, 
rng_times: *
, 
rng_car: |r|
, 
ocmon: OCMon
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
, 
implies: P 
⇒ Q
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
subtype_rel: A ⊆r B
, 
dset: DSet
, 
true: True
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
omralist: omral(g;r)
, 
oalist: oal(a;b)
, 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq)
, 
dset_list: s List
, 
set_prod: s × t
, 
add_grp_of_rng: r↓+gp
, 
grp_id: e
, 
pi2: snd(t)
, 
grp_car: |g|
, 
squash: ↓T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
omral_lookups_same_a, 
omral_action_wf, 
rng_times_wf, 
grp_car_wf, 
set_car_wf, 
omralist_wf, 
dset_wf, 
rng_car_wf, 
cdrng_wf, 
ocmon_wf, 
lookup_wf, 
oset_of_ocmon_wf0, 
rng_zero_wf, 
infix_ap_wf, 
dset_of_mon_wf0, 
add_grp_of_rng_wf, 
equal_wf, 
squash_wf, 
true_wf, 
lookup_omral_action, 
iff_weakening_equal, 
rng_times_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
natural_numberEquality, 
functionEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}v,w:|r|.  \mforall{}ps:|omral(g;r)|.    (((v  *  w)  \mcdot{}\mcdot{}  ps)  =  (v  \mcdot{}\mcdot{}  (w  \mcdot{}\mcdot{}  ps)))
Date html generated:
2017_10_01-AM-10_06_56
Last ObjectModification:
2017_03_03-PM-01_14_36
Theory : polynom_3
Home
Index