Nuprl Lemma : State-comb-classrel-mem2

[Info,B,A:Type]. ∀[f:A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)].
  ∀X:EClass(A). ∀es:EO+(Info). ∀e:E.
    ∀[v:B]
      (v ∈ State-comb(init;f;X)(e)
      ⇐⇒ if e ∈b X
          then ↓∃w:B. ∃a:A. (w ∈ Memory-class(f;init;X)(e) ∧ (v (f w) ∈ B) ∧ a ∈ X(e))
          else v ∈ Memory-class(f;init;X)(e)
          fi )


Proof




Definitions occuring in Statement :  State-comb: State-comb(init;f;X) Memory-class: Memory-class(f;init;X) classrel: v ∈ X(e) member-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E Id: Id ifthenelse: if then else fi  uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  classrel_wf State-comb_wf member-eclass_wf bool_wf eqtt_to_assert squash_wf exists_wf Memory-class_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf Id_wf bag_wf State-comb-classrel es-first_wf2 bool_cases assert_of_bnot sq_stable__squash uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf sq_stable__classrel assert-member-eclass Memory-classrel iterated_classrel_wf es-pred_wf and_wf bag-member_wf es-loc_wf all_wf or_wf

Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].
    \mforall{}X:EClass(A).  \mforall{}es:EO+(Info).  \mforall{}e:E.
        \mforall{}[v:B]
            (v  \mmember{}  State-comb(init;f;X)(e)
            \mLeftarrow{}{}\mRightarrow{}  if  e  \mmember{}\msubb{}  X
                    then  \mdownarrow{}\mexists{}w:B.  \mexists{}a:A.  (w  \mmember{}  Memory-class(f;init;X)(e)  \mwedge{}  (v  =  (f  a  w))  \mwedge{}  a  \mmember{}  X(e))
                    else  v  \mmember{}  Memory-class(f;init;X)(e)
                    fi  )



Date html generated: 2015_07_22-PM-00_21_24
Last ObjectModification: 2015_01_28-AM-10_14_47

Home Index