Nuprl Lemma : State-loc-comb-fun-eq

[Info,B,A:Type]. ∀[f:Id ─→ A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].
  (State-loc-comb(init;f;X)(e)
     if e ∈b X
         then if first(e)
              then loc(e) X(e) sv-bag-only(init loc(e))
              else loc(e) X(e) State-loc-comb(init;f;X)(pred(e))
              fi 
       if first(e) then sv-bag-only(init loc(e))
       else State-loc-comb(init;f;X)(pred(e))
       fi 
     ∈ B) supposing 
     (single-valued-classrel(es;X;A) and 
     (∀l:Id. single-valued-bag(init l;B)) and 
     (∀l:Id. (1 ≤ #(init l))))


Proof




Definitions occuring in Statement :  State-loc-comb: State-loc-comb(init;f;X) classfun: X(e) single-valued-classrel: single-valued-classrel(es;X;T) member-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-first: first(e) es-pred: pred(e) es-loc: loc(e) es-E: E Id: Id ifthenelse: if then else fi  uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a function: x:A ─→ B[x] natural_number: $n universe: Type equal: t ∈ T sv-bag-only: sv-bag-only(b) single-valued-bag: single-valued-bag(b;T) bag-size: #(bs) bag: bag(T)
Lemmas :  State-comb-fun-eq es-loc_wf equal_wf squash_wf true_wf State-loc-comb-fun-eq-non-loc iff_weakening_equal eqtt_to_assert classfun-res_wf sv-bag-only_wf decidable__lt false_wf add_functionality_wrt_le add-commutes zero-add le-add-cancel eqff_to_assert bool_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-pred_wf classfun_wf State-comb-functional es-pred-loc-base State-comb_wf single-valued-classrel_wf all_wf Id_wf single-valued-bag_wf le_wf bag-size_wf nat_wf es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf bag_wf

Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].
\mforall{}[e:E].
    (State-loc-comb(init;f;X)(e)
          =  if  e  \mmember{}\msubb{}  X
                  then  if  first(e)
                            then  f  loc(e)  X(e)  sv-bag-only(init  loc(e))
                            else  f  loc(e)  X(e)  State-loc-comb(init;f;X)(pred(e))
                            fi 
              if  first(e)  then  sv-bag-only(init  loc(e))
              else  State-loc-comb(init;f;X)(pred(e))
              fi  )  supposing 
          (single-valued-classrel(es;X;A)  and 
          (\mforall{}l:Id.  single-valued-bag(init  l;B))  and 
          (\mforall{}l:Id.  (1  \mleq{}  \#(init  l))))



Date html generated: 2015_07_22-PM-00_24_16
Last ObjectModification: 2015_02_04-PM-04_39_46

Home Index