Nuprl Lemma : es-prior-class-when-programmable
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[d:A].
(X'?d) when Y
= eclass-compose2(λys,xs. if (#(ys) =z 1)
then if (#(xs) =z 1) then {<only(ys), only(xs)>} else {<only(ys), d>} fi
else {}
fi ;Y;Prior(X))
∈ EClass(B × A)
supposing Singlevalued(X)
Proof
Definitions occuring in Statement :
es-prior-class-when: (X'?d) when Y
,
primed-class: Prior(X)
,
eclass-compose2: eclass-compose2(f;X;Y)
,
sv-class: Singlevalued(X)
,
eclass: EClass(A[eo; e])
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
lambda: λx.A[x]
,
pair: <a, b>
,
product: x:A × B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
,
bag-only: only(bs)
,
bag-size: #(bs)
,
single-bag: {x}
,
empty-bag: {}
Lemmas :
is-prior-class-when,
es-interface-subtype_rel2,
es-E_wf,
event-ordering+_subtype,
event-ordering+_wf,
top_wf,
in-eclass_wf,
bool_wf,
eqtt_to_assert,
primed-class_wf,
bag_size_single_lemma,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
true_wf,
assert_wf,
eq_int_wf,
bag-size_wf,
single-bag_wf,
eclass-val_wf,
nat_wf,
bag_size_empty_lemma,
false_wf,
eclass-compose2_wf,
assert_of_eq_int,
neg_assert_of_eq_int,
empty-bag_wf,
bag_wf,
es-prior-class-when_wf,
subtype_top,
bag_only_single_lemma,
primed-class-prior-val,
iff_weakening_equal,
assert_functionality_wrt_uiff,
es-prior-val_wf,
squash_wf,
eclass_wf
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[X:EClass(A)]. \mforall{}[Y:EClass(B)]. \mforall{}[d:A].
(X'?d) when Y
= eclass-compose2(\mlambda{}ys,xs. if (\#(ys) =\msubz{} 1)
then if (\#(xs) =\msubz{} 1) then \{<only(ys), only(xs)>\} else \{<only(ys), d>\} fi
else \{\}
fi ;Y;Prior(X))
supposing Singlevalued(X)
Date html generated:
2015_07_21-PM-04_22_08
Last ObjectModification:
2015_02_04-PM-06_05_11
Home
Index