Nuprl Lemma : fpf-cap-join-subtype2

[A:Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> Type]. ∀[a:A].  f ⊕ g(a)?Top ⊆g(a)?Top supposing || g


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-compatible: || g fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top universe: Type
Lemmas :  fpf-join-cap-sq subtype-fpf2 top_wf subtype_top fpf-compatible_wf fpf_wf deq_wf fpf-dom_wf bool_wf eqtt_to_assert subtype_rel-equal fpf-ap_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base assert_wf bnot_wf not_wf subtype_rel_self fpf-cap_wf uiff_transitivity assert_of_bnot
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  Type].  \mforall{}[a:A].
    f  \moplus{}  g(a)?Top  \msubseteq{}r  g(a)?Top  supposing  f  ||  g



Date html generated: 2015_07_17-AM-11_13_47
Last ObjectModification: 2015_01_28-AM-07_42_37

Home Index