Nuprl Lemma : until-class-simple-comb

[Info,A:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(Top)].
  ((X until Y) = λxs,ys.if bag-null(ys) then xs else {} fi |X;Prior(Y)| ∈ EClass(A))


Proof




Definitions occuring in Statement :  simple-comb2: λx,y.F[x; y]|X;Y| primed-class: Prior(X) until-class: (X until Y) eclass: EClass(A[eo; e]) ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top universe: Type equal: t ∈ T bag-null: bag-null(bs) empty-bag: {}
Lemmas :  class-pred-cases uiff_transitivity equal-wf-T-base assert_wf bag_wf eqtt_to_assert assert-bag-null no-classrel-iff-empty primed-class_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf bool_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot empty-bag_wf all_wf classrel_wf es-E_wf event-ordering+_subtype event-ordering+_wf top_wf primed-classrel es-locl_wf alle-lt_wf Id_wf es-loc_wf es-le_wf

Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].
    ((X  until  Y)  =  \mlambda{}xs,ys.if  bag-null(ys)  then  xs  else  \{\}  fi  |X;Prior(Y)|)



Date html generated: 2015_07_21-PM-03_19_24
Last ObjectModification: 2015_01_27-PM-07_22_48

Home Index