Nuprl Lemma : until-class-simple-comb
∀[Info,A:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(Top)].
  ((X until Y) = λxs,ys.if bag-null(ys) then xs else {} fi |X;Prior(Y)| ∈ EClass(A))
Proof
Definitions occuring in Statement : 
simple-comb2: λx,y.F[x; y]|X;Y|
, 
primed-class: Prior(X)
, 
until-class: (X until Y)
, 
eclass: EClass(A[eo; e])
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag-null: bag-null(bs)
, 
empty-bag: {}
Lemmas : 
class-pred-cases, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
bag_wf, 
eqtt_to_assert, 
assert-bag-null, 
no-classrel-iff-empty, 
primed-class_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
bool_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
empty-bag_wf, 
all_wf, 
classrel_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
top_wf, 
primed-classrel, 
es-locl_wf, 
alle-lt_wf, 
Id_wf, 
es-loc_wf, 
es-le_wf
Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].
    ((X  until  Y)  =  \mlambda{}xs,ys.if  bag-null(ys)  then  xs  else  \{\}  fi  |X;Prior(Y)|)
Date html generated:
2015_07_21-PM-03_19_24
Last ObjectModification:
2015_01_27-PM-07_22_48
Home
Index