Nuprl Lemma : lg-search-minimal

[T:Type]. ∀[G:LabeledGraph(T)]. ∀[P:T ─→ 𝔹].
  ∀[n:ℕlg-size(G)]. outl(lg-search(G;x.P[x])) ≤ supposing ↑P[lg-label(G;n)] supposing lg-exists(G;x.↑P[x])


Proof




Definitions occuring in Statement :  lg-search: lg-search(G;x.P[x]) lg-exists: lg-exists(G;x.P[x]) lg-label: lg-label(g;x) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) int_seg: {i..j-} outl: outl(x) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ─→ B[x] natural_number: $n universe: Type
Lemmas :  search_property lg-size_wf lg-label2_wf eq_int_wf search_wf int_seg_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__le less_than_wf outl_wf assert_wf exists_wf labeled-graph_wf

Latex:
\mforall{}[T:Type].  \mforall{}[G:LabeledGraph(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[n:\mBbbN{}lg-size(G)].  outl(lg-search(G;x.P[x]))  \mleq{}  n  supposing  \muparrow{}P[lg-label(G;n)] 
    supposing  lg-exists(G;x.\muparrow{}P[x])



Date html generated: 2015_07_23-AM-11_04_55
Last ObjectModification: 2015_01_28-PM-11_35_08

Home Index