Nuprl Lemma : lg-search-minimal
∀[T:Type]. ∀[G:LabeledGraph(T)]. ∀[P:T ─→ 𝔹].
  ∀[n:ℕlg-size(G)]. outl(lg-search(G;x.P[x])) ≤ n supposing ↑P[lg-label(G;n)] supposing lg-exists(G;x.↑P[x])
Proof
Definitions occuring in Statement : 
lg-search: lg-search(G;x.P[x])
, 
lg-exists: lg-exists(G;x.P[x])
, 
lg-label: lg-label(g;x)
, 
lg-size: lg-size(g)
, 
labeled-graph: LabeledGraph(T)
, 
int_seg: {i..j-}
, 
outl: outl(x)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
universe: Type
Lemmas : 
search_property, 
lg-size_wf, 
lg-label2_wf, 
eq_int_wf, 
search_wf, 
int_seg_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
decidable__le, 
less_than_wf, 
outl_wf, 
assert_wf, 
exists_wf, 
labeled-graph_wf
Latex:
\mforall{}[T:Type].  \mforall{}[G:LabeledGraph(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[n:\mBbbN{}lg-size(G)].  outl(lg-search(G;x.P[x]))  \mleq{}  n  supposing  \muparrow{}P[lg-label(G;n)] 
    supposing  lg-exists(G;x.\muparrow{}P[x])
Date html generated:
2015_07_23-AM-11_04_55
Last ObjectModification:
2015_01_28-PM-11_35_08
Home
Index