{ [V:Type]
    ((v,v':V.  Dec(v = v'))
     (A:Id List. W:{a:Id| (a  A)}  List List.
        x,y:ts-reachable(consensus-ts4(V;A;W)). i:. v:V.
          ((x ts-rel(consensus-ts4(V;A;W)) y)
           in state y, inning i could commit v 
           in state x, inning i could commit v ))) }

{ Proof }



Definitions occuring in Statement :  cs-inning-committable: in state s, inning i could commit v  consensus-ts4: consensus-ts4(V;A;W) Id: Id nat: decidable: Dec(P) uall: [x:A]. B[x] infix_ap: x f y all: x:A. B[x] implies: P  Q set: {x:A| B[x]}  list: type List universe: Type equal: s = t l_member: (x  l) ts-reachable: ts-reachable(ts) ts-rel: ts-rel(ts)
Definitions :  rel_star: R^* spread: spread def pi1: fst(t) limited-type: LimitedType fpf: a:A fp-B[a] ts-type: ts-type(ts) real: grp_car: |g| subtype: S  T member: t  T strong-subtype: strong-subtype(A;B) ge: i  j  less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B consensus-state4: ConsensusState cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i union: left + right or: P  Q and: P  Q false: False not: A le: A  B int: ts-rel: ts-rel(ts) apply: f a infix_ap: x f y uall: [x:A]. B[x] isect: x:A. B[x] cs-inning-committable: in state s, inning i could commit v  exists: x:A. B[x] product: x:A  B[x] universe: Type implies: P  Q decidable: Dec(P) equal: s = t prop: list: type List set: {x:A| B[x]}  l_member: (x  l) Id: Id ts-reachable: ts-reachable(ts) consensus-ts4: consensus-ts4(V;A;W) all: x:A. B[x] function: x:A  B[x] nat: Auto: Error :Auto,  Complete: Error :Complete,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  tactic: Error :tactic,  so_lambda: x.t[x] CollapseTHENA: Error :CollapseTHENA,  D: Error :D,  cs-inning: Inning(s;a) cs-estimate: Estimate(s;a) fpf-domain: fpf-domain(f) AssertBY: Error :AssertBY,  consensus-rel: CR[x,y] lambda: x.A[x] cand: A c B fpf-single: x : v int-deq: IntDeq fpf-join: f  g cs-precondition: state s may consider v in inning i natural_number: $n add: n + m cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i pair: <a, b> bool: void: Void guard: {T} fpf-ap: f(x) IdLnk: IdLnk Knd: Knd MaName: MaName l_disjoint: l_disjoint(T;l1;l2) consensus-state3: consensus-state3(T) sq_type: SQType(T) atom: Atom atom: Atom$n rev_implies: P  Q iff: P  Q eqof: eqof(d) intensional-universe: IType list_ind: list_ind def reduce: reduce(f;k;as) deq-member: deq-member(eq;x;L) deq: EqDecider(T) true: True fpf-dom: x  dom(f) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b top: Top fpf-cap: f(x)?z squash: T bag: bag(T) fpf-sub: f  g ma-state: State(ds) rcv: rcv(l,tg) locl: locl(a) tag-by: zT record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B sqequal: s ~ t bfalse: ff eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q bnot: b btrue: tt append: as @ bs map: map(f;as) cons: [car / cdr] hd: hd(l) last: last(L) remove-repeats: remove-repeats(eq;L) select: l[i] filter: filter(P;l) length: ||as|| nil: [] ts-stable-rel: ts-stable-rel(ts;x,y.R[x; y])
Lemmas :  consensus-ts4-estimate-rel rel_rel_star consensus-rel_wf rel_star_wf consensus-ts4-inning-rel member_singleton not_functionality_wrt_iff length_wf1 select_wf list-subtype member-fpf-domain fpf-domain_wf2 l_member-settype l_member_subtype assert_of_bnot eqff_to_assert uiff_transitivity bool_wf iff_weakening_uiff bool_subtype_base eqtt_to_assert bool_cases bnot_wf fpf-join-ap-sq subtype_rel_function subtype_rel_self subtype_rel_simple_product squash_wf product_subtype_base list_subtype_base int_subtype_base fpf-domain-join fpf-type cs-estimate_wf subtype-fpf2 subtype-top fpf-single_wf assert_wf fpf-ap_wf intensional-universe_wf cs-inning_wf int-deq_wf fpf_wf top_wf fpf-domain_wf true_wf fpf-dom_wf ifthenelse_wf false_wf fpf-trivial-subtype-top member-fpf-dom subtype_base_sq atom2_subtype_base decidable__equal_Id decidable__cs-not-completed not_wf nat_properties decidable__cs-archived cs-not-completed_wf le_wf uall_wf consensus-ts4-estimate-domain consensus-ts4_wf subtype_rel_wf ts-type_wf ts-reachable_wf nat_wf member_wf ts-rel_wf consensus-state4_wf cs-inning-committable_wf cs-archived_wf Id_wf l_member_wf decidable_wf

\mforall{}[V:Type]
    ((\mforall{}v,v':V.    Dec(v  =  v'))
    {}\mRightarrow{}  (\mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.  \mforall{}x,y:ts-reachable(consensus-ts4(V;A;W)).  \mforall{}i:\mBbbN{}.  \mforall{}v:V\000C.
                ((x  ts-rel(consensus-ts4(V;A;W))  y)
                {}\mRightarrow{}  in  state  y,  inning  i  could  commit  v 
                {}\mRightarrow{}  in  state  x,  inning  i  could  commit  v  )))


Date html generated: 2011_08_16-AM-10_04_44
Last ObjectModification: 2011_06_18-AM-09_00_59

Home Index