Nuprl Lemma : cs-possible-state-reachable

[V:Type]. [A:Id List]. [W:{a:Id| (a  A)}  List List]. [v:V].
  ([L:{a:Id| (a  A)}  List]
     (<a.<0, if deq-member(IdDeq;a;L) then 0 : v else  fi >, a.mk_fpf(A;b.<0, ff>)>
      ts-reachable(consensus-ts5(V;A;W)))) supposing 
     (two-intersection(A;W) and 
     (1 < ||W||))


Proof not projected




Definitions occuring in Statement :  consensus-ts5: consensus-ts5(V;A;W) two-intersection: two-intersection(A;W) mk_fpf: mk_fpf(L;f) fpf-single: x : v fpf-empty: id-deq: IdDeq Id: Id length: ||as|| ifthenelse: if b then t else f fi  bfalse: ff uimplies: b supposing a uall: [x:A]. B[x] member: t  T less_than: a < b set: {x:A| B[x]}  lambda: x.A[x] pair: <a, b> list: type List natural_number: $n universe: Type l_member: (x  l) deq-member: deq-member(eq;x;L) ts-reachable: ts-reachable(ts)
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a member: t  T ts-reachable: ts-reachable(ts) consensus-ts5: consensus-ts5(V;A;W) bfalse: ff ts-type: ts-type(ts) consensus-state4: ConsensusState consensus-state5: Knowledge(ConsensusState) all: x:A. B[x] pi1: fst(t) top: Top pi2: snd(t) infix_ap: x f y ts-rel: ts-rel(ts) ts-init: ts-init(ts) prop: so_lambda: x.t[x] squash: T true: True subtype: S  T ifthenelse: if b then t else f fi  implies: P  Q btrue: tt deq-member: deq-member(eq;x;L) reduce: reduce(f;k;as) eqof: eqof(d) and: P  Q cand: A c B assert: b guard: {T} bnot: b consensus-rel-knowledge: consensus-rel-knowledge(V;A;W;x;y) exists: x:A. B[x] consensus-rel-knowledge-step: consensus-rel-knowledge-step(V;A;W;x1;x2;y1;y2;a) cs-inning: Inning(s;a) bor: p q cs-estimate: Estimate(s;a) or: P  Q consensus-rel-knowledge-archive-step: consensus-rel-knowledge-archive-step(V;A;W;x1;x2;y1;y2;a) cs-knowledge: Knowledge(x;a) fpf-single: x : v fpf-empty: fpf-domain: fpf-domain(f) exposed-bfalse: exposed-bfalse not: A cs-knowledge-precondition: may consider v in inning i based on knowledge (s) isl: isl(x) false: False mk_fpf: mk_fpf(L;f) fpf-dom: x  dom(f) so_apply: x[s] iff: P  Q bool: unit: Unit decidable: Dec(P) uiff: uiff(P;Q) rev_implies: P  Q length: ||as|| ycomb: Y sq_stable: SqStable(P) two-intersection: two-intersection(A;W) l_all: (xL.P[x]) it: eq_id: a = b
Lemmas :  l_member_wf ifthenelse_wf deq-member_wf Id_wf id-deq_wf fpf_wf fpf-single_wf fpf-empty_wf mk_fpf_wf top_wf rel_star_wf consensus-rel-knowledge_wf subtype_rel_simple_product two-intersection_wf less_than_wf length_wf rel_star_weakening strong-subtype-deq-subtype strong-subtype-set3 strong-subtype-self bool_wf equal_wf assert_wf nil_member bnot_wf not_wf iff_transitivity iff_weakening_uiff eqtt_to_assert assert-deq-member eqff_to_assert assert_of_bnot not_functionality_wrt_iff rel_star_transitivity rel_rel_star decidable__l_member decidable__equal_set decidable__equal_Id bor_wf eq_id_wf btrue_wf or_wf true_wf band_wf false_wf bfalse_wf member_wf assert_of_bor or_functionality_wrt_uiff2 assert-eq-id uiff_transitivity assert_functionality_wrt_uiff bnot_thru_bor assert_of_band and_functionality_wrt_uiff2 not_functionality_wrt_uiff squash_wf consensus-rel-knowledge-step_wf eqof_wf cs-knowledge_wf consensus-rel-add-knowledge-step_wf consensus-rel-knowledge-inning-step_wf l_member_set2 cs-knowledge-precondition_wf fpf-join_wf int-deq_wf all_wf fpf-dom_wf exists_wf cons_member sq_stable__assert fpf-join-empty

\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[W:\{a:Id|  (a  \mmember{}  A)\}    List  List].  \mforall{}[v:V].
    (\mforall{}[L:\{a:Id|  (a  \mmember{}  A)\}    List]
          (<\mlambda{}a.ɘ,  if  deq-member(IdDeq;a;L)  then  0  :  v  else  \motimes{}  fi  >,  \mlambda{}a.mk\_fpf(A;\mlambda{}b.ɘ,  ff>)>
          \mmember{}  ts-reachable(consensus-ts5(V;A;W))))  supposing 
          (two-intersection(A;W)  and 
          (1  <  ||W||))


Date html generated: 2012_01_23-PM-12_06_32
Last ObjectModification: 2011_12_19-PM-04_32_37

Home Index