{ [Info,A1,A2:Type]. [X1:EClass(A1)]. [X2:EClass(A2)]. [size:].
  [num1:A1  ]. [num2:A2  ]. [P1:A1  ]. [P2:A2  ].
    Collect(size v's from X1 with maximum num1[v] such that P1[v])
    = Collect(size v's from X2 with maximum num2[v] such that P2[v]) 
    supposing es:EO+(Info). e:E.
                ((e  X1  e  X2)
                 ((e  X1)
                   (e  X2)
                   ((num1[X1(e)] = num2[X2(e)])
                      (P1[X1(e)]  P2[X2(e)])))) }

{ Proof }



Definitions occuring in Statement :  es-collect-filter: Collect(size v's from X with maximum num[v] such that P[v]) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b bool: nat_plus: nat: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: P  Q implies: P  Q and: P  Q function: x:A  B[x] universe: Type equal: s = t
Definitions :  universe: Type member: t  T equal: s = t function: x:A  B[x] all: x:A. B[x] event-ordering+: EO+(Info) dep-isect: Error :dep-isect,  event_ordering: EO es-E: E top: Top token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  atom: Atom subtype_rel: A r B eq_atom: eq_atom$n(x;y) apply: f a record-select: r.x record+: record+ lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) union: left + right nat_plus: nat: set: {x:A| B[x]}  bool: prop: product: x:A  B[x] and: P  Q iff: P  Q assert: b eclass-val: X(e) so_apply: x[s] subtype: S  T implies: P  Q es-E-interface: E(X) rev_implies: P  Q cand: A c B in-eclass: e  X so_lambda: x.t[x] es-collect-filter: Collect(size v's from X with maximum num[v] such that P[v]) pair: <a, b> int: fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) decide: case b of inl(x) =s[x] | inr(y) =t[y] fpf-dom: x  dom(f) less_than: a < b or: P  Q Knd: Knd IdLnk: IdLnk Id: Id l_member: (x  l) sq_stable: SqStable(P) guard: {T} eq_knd: a = b list: type List isect: x:A. B[x] es-first-at: e is first@ i s.t.  e.P[e] alle-lt: e<e'.P[e] not: A length: ||as|| es-loc: loc(e) le: A  B es-interface-predecessors: (X)(e) eq_int: (i = j) band: p  q filter: filter(P;l) void: Void false: False es-interface-at: X@i es-collect-accum: es-collect-accum(X;x.num[x];init;a,v.f[a; v];a.P[a]) es-interface-accum: es-interface-accum(f;x;X) collect_filter: collect_filter() collect_accum: collect_accum(x.num[x];init;a,v.f[a; v];a.P[a]) cond-class: [X?Y] ge: i  j  sq_type: SQType(T) isl: isl(x) can-apply: can-apply(f;x) es-locl: (e <loc e') true: True real: grp_car: |g| squash: T btrue: tt infix_ap: x f y es-causl: (e < e') decidable: Dec(P) exists: x:A. B[x] divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_all: (xL.P[x]) l_exists: (xL. P[x]) l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) l_disjoint: l_disjoint(T;l1;l2) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b path-goes-thru: x-f*-y thru i uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) fpf-sub: f  g limited-type: LimitedType append: as @ bs locl: locl(a) natural_number: $n imax: imax(a;b) MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  THENM: Error :THENM,  CollapseTHENA: Error :CollapseTHENA,  Complete: Error :Complete,  Try: Error :Try,  ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor
Lemmas :  false_wf sq_stable_from_decidable decidable__assert assert_elim int_sq length_wf1 es-loc_wf filter_wf es-interface-predecessors_wf es-E-interface_wf band_wf eq_int_wf squash_wf true_wf iff_imp_equal_bool es-locl_wf es-interface-predecessors-equal-subtype length_wf_nat es-interface-extensionality Id_wf not_wf es-first-at_wf alle-lt_wf es-interface-subtype_rel2 top_wf rev_implies_wf es-collect-filter-val is-collect-filter le_wf member_wf subtype_rel_wf es-interface-top es-collect-filter_wf in-eclass_wf iff_wf assert_wf eclass-val_wf event-ordering+_inc bool_wf nat_wf nat_plus_wf eclass_wf es-E_wf subtype_rel_self event-ordering+_wf

\mforall{}[Info,A1,A2:Type].  \mforall{}[X1:EClass(A1)].  \mforall{}[X2:EClass(A2)].  \mforall{}[size:\mBbbN{}\msupplus{}].  \mforall{}[num1:A1  {}\mrightarrow{}  \mBbbN{}].
\mforall{}[num2:A2  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P1:A1  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[P2:A2  {}\mrightarrow{}  \mBbbB{}].
    Collect(size  v's  from  X1  with  maximum  num1[v]  such  that  P1[v])
    =  Collect(size  v's  from  X2  with  maximum  num2[v]  such  that  P2[v]) 
    supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.
                            ((\muparrow{}e  \mmember{}\msubb{}  X1  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  X2)
                            \mwedge{}  ((\muparrow{}e  \mmember{}\msubb{}  X1)
                                {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X2)
                                {}\mRightarrow{}  ((num1[X1(e)]  =  num2[X2(e)])  \mwedge{}  (\muparrow{}P1[X1(e)]  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}P2[X2(e)]))))


Date html generated: 2011_08_16-PM-06_11_08
Last ObjectModification: 2010_11_07-AM-02_18_10

Home Index