{ [Info:Type]
    es:EO+(Info)
      [A:Type]
        X:EClass(A)
          [S:Type]
            init:S. f:S  A  S. test:S  A  . nxt:S  A  S.
              let Z = Threshold(init;f;test;nxt;X) in
                  e:E(Z)
                    (((e  prior(Z))
                     (e':E(Z)
                        ((e' = prior(Z)(e))
                         (e' <loc e)
                         (e'':E(X)
                             ((e' <loc e'')
                              (e'' <loc e)
                              ((test 
                                    list_accum(s,v.f s v;nxt Z(e');X(e', e'')) 
                                    X(e'')))))
                         let s = list_accum(s,v.f s v;nxt Z(e');X(e', e)) in
                              ((test s X(e)))  (Z(e) = <s, X(e)>))))
                     ((e  prior(Z))
                       (e':E(X)
                           ((e' <loc e)
                            ((test list_accum(s,v.f s v;init;X(<e')) 
                                  X(e')))))
                       let s = list_accum(s,v.f s v;init;X(<e)) in
                            ((test s X(e)))  (Z(e) = <s, X(e)>))) }

{ Proof }



Definitions occuring in Statement :  es-threshold: Threshold(init;f;test;nxt;X) es-prior-interface: prior(X) es-prior-interval-vals: X(e1, e2) es-prior-interface-vals: X(<e) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E assert: b bool: let: let uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: A implies: P  Q or: P  Q and: P  Q apply: f a function: x:A  B[x] pair: <a, b> product: x:A  B[x] universe: Type equal: s = t list_accum: list_accum(x,a.f[x; a];y;l)
Definitions :  es-interface-at: X@i imax-class: (maximum f[v]  lb with v from X) es-filter-image: f[X] map-class: (f[v] where v from X) isl: isl(x) can-apply: can-apply(f;x) so_lambda: x.t[x] fpf-cap: f(x)?z filter: filter(P;l) record: record(x.T[x]) list: type List true: True sq_type: SQType(T) cond-class: [X?Y] so_apply: x[s] guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) limited-type: LimitedType bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit intensional-universe: IType fpf: a:A fp-B[a] cand: A c B set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] prop: atom: Atom es-base-E: es-base-E(es) token: "$token" record-select: r.x pair: <a, b> rev_implies: P  Q es-prior-interface-vals: X(<e) es-prior-interval-vals: X(e1, e2) eclass-val: X(e) list_accum: list_accum(x,a.f[x; a];y;l) es-prior-interface: prior(X) ifthenelse: if b then t else f fi  iff: P  Q subtype: S  T lambda: x.A[x] member: t  T strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B es-threshold: Threshold(init;f;test;nxt;X) es-E: E top: Top es-E-interface: E(X) event_ordering: EO es-locl: (e <loc e') void: Void equal: s = t exists: x:A. B[x] and: P  Q union: left + right false: False or: P  Q implies: P  Q not: A product: x:A  B[x] bool: event-ordering+: EO+(Info) eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] uall: [x:A]. B[x] isect: x:A. B[x] let: let apply: f a universe: Type all: x:A. B[x] function: x:A  B[x] squash: T sqequal: s ~ t MaAuto: Error :MaAuto,  Complete: Error :Complete,  Try: Error :Try,  THENL_cons: Error :THENL_nil,  THENL_cons: Error :THENL_cons,  SplitOn: Error :SplitOn,  CollapseTHENA: Error :CollapseTHENA,  THENL_v2: Error :THENL,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  in-eclass: e  X assert: b AssertBY: Error :AssertBY,  THENM: Error :THENM,  tactic: Error :tactic,  pi1: fst(t) es-loc: loc(e) Id: Id es-causl: (e < e') es-le: e loc e' 
Lemmas :  es-causl_wf Id_wf es-locl_transitivity2 es-le_weakening es-causl_weakening es-is-prior-interface set_subtype_base es-prior-interface-val-unique2 es-prior-interface-val assert_witness squash_wf bool_wf es-E-interface_wf es-threshold_wf not_wf assert_wf es-locl_wf es-E_wf eclass_wf event-ordering+_wf event-ordering+_inc is-threshold iff_wf es-base-E_wf subtype_rel_self in-eclass_wf member_wf es-interface-top subtype_rel_wf intensional-universe_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf uiff_inversion es-prior-interface_wf1 es-prior-interface_wf es-interface-subtype_rel2 top_wf rev_implies_wf true_wf false_wf unit_wf eclass-val_wf es-prior-interval-vals_wf list_accum_wf es-prior-interface-vals_wf ifthenelse_wf list-subtype l_member_wf eclass-val_wf2 es-interface-val_wf2 es-threshold-val uall_wf assert_elim es-interface-val_wf subtype_base_sq bool_subtype_base bool_cases

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info)
        \mforall{}[A:Type]
            \mforall{}X:EClass(A)
                \mforall{}[S:Type]
                    \mforall{}init:S.  \mforall{}f:S  {}\mrightarrow{}  A  {}\mrightarrow{}  S.  \mforall{}test:S  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}nxt:S  \mtimes{}  A  {}\mrightarrow{}  S.
                        let  Z  =  Threshold(init;f;test;nxt;X)  in
                                \mforall{}e:E(Z)
                                    (((\muparrow{}e  \mmember{}\msubb{}  prior(Z))
                                    \mwedge{}  (\mexists{}e':E(Z)
                                            ((e'  =  prior(Z)(e))
                                            \mwedge{}  (e'  <loc  e)
                                            \mwedge{}  (\mforall{}e'':E(X)
                                                      ((e'  <loc  e'')
                                                      {}\mRightarrow{}  (e''  <loc  e)
                                                      {}\mRightarrow{}  (\mneg{}\muparrow{}(test  list\_accum(s,v.f  s  v;nxt  Z(e');X(e',  e''))  X(e'')))))
                                            \mwedge{}  let  s  =  list\_accum(s,v.f  s  v;nxt  Z(e');X(e',  e))  in
                                                        (\muparrow{}(test  s  X(e)))  \mwedge{}  (Z(e)  =  <s,  X(e)>))))
                                    \mvee{}  ((\mneg{}\muparrow{}e  \mmember{}\msubb{}  prior(Z))
                                        \mwedge{}  (\mforall{}e':E(X)
                                                  ((e'  <loc  e)  {}\mRightarrow{}  (\mneg{}\muparrow{}(test  list\_accum(s,v.f  s  v;init;X(<e'))  X(e')))))
                                        \mwedge{}  let  s  =  list\_accum(s,v.f  s  v;init;X(<e))  in
                                                    (\muparrow{}(test  s  X(e)))  \mwedge{}  (Z(e)  =  <s,  X(e)>)))


Date html generated: 2011_08_16-PM-05_12_08
Last ObjectModification: 2011_06_20-AM-01_13_44

Home Index